Queen Mary UNIVERSITY OF LONDON

M.Sc. EXAMINATION BY COURSE UNIT

MTHM032 Advanced Algorithmic Mathematics

27 May 2004 10:00-13:00

The duration of this examination is 3 hours.

You may attempt as many questions as you wish and all questions carry equal marks. Except for the award of a bare pass, only the best four questions answered will be counted.

Calculators are NOT permitted in this examination. The unauthorised use of a calculator constitutes an examination offence.

Show your calculations.

Throughout, \mathbb{N} denotes the set of non-negative integers and F denotes a field.

- 1. (a) [6 marks] Define what is meant by a partial order, total order and well-order on a set S.
 - (b) [5 marks] Let \leq be a total order on S. Prove that \leq is a well-order on S if and only if there is no infinite strictly decreasing sequence $a_1 > a_2 > a_3 > \cdots$ of elements of S.
 - (c) [2 marks] Define what is meant by a monomial order for $F[x_1, \ldots, x_n]$.
 - (d) [4 marks] Define *lexicographic order* on \mathbb{N}^n , and, assuming that this order is a well-order, prove that it is a monomial order for $F[x_1, \ldots, x_n]$.
 - (e) [4 marks] Suppose \leq is a monomial order for $F[x_1, \ldots, x_n]$. Prove that

$$(0,\ldots,0)\leq \alpha$$

for all $\alpha \in \mathbb{N}^n$.

- (f) [4 marks] Show that if \leq is a monomial order for F[x], then $x^0 < x^1 < x^2 < \cdots$
- 2. (a) [4 marks] State precisely the input and output specifications of the algorithm MultivariateDivision.

1

(b) [6 marks] Apply the algorithm MultivariateDivision systematically to divide $x^2y + xy^2 + xy - y^3$ by $(y^2 - 1, xy - 1)$, using lexicographic order with $x >_{\text{lex}} y$.

- (c) [6 marks] Define what is meant by an *ideal* of $F[x_1, \ldots, x_n]$, by the ideal $\langle S \rangle$ generated by $S \subseteq F[x_1, \ldots, x_n]$, and by a monomial ideal of $F[x_1, \ldots, x_n]$.
- (d) [5 marks] Give an example, with justification, of $g, g_1, g_2 \in \mathbb{Q}[x]$, such that $g \in \langle g_1, g_2 \rangle \neq \mathbb{Q}[x]$, but multivariate division of g by (g_1, g_2) does not give remainder r = 0.
- (e) [4 marks] Prove that $\langle x^2 xy, xy + y^2, (x+y)^2 \rangle$ is a monomial ideal of $\mathbb{Q}[x,y]$.
- 3. (a) [2 marks] Define what is meant by a *Gröbner basis* for an ideal of $F[x_1, \ldots, x_n]$ (with respect to a fixed monomial order for $F[x_1, \ldots, x_n]$).
 - (b) [4 marks] Let $0 \neq f \in F[x_1, ..., x_n]$. Show that, with respect to any fixed monomial order, $\{f\}$ is a Gröbner basis for $\langle f \rangle$.
 - (c) [2 marks] Define what is meant by the S-polynomial of two polynomials in $F[x_1, \ldots, x_n]$.
 - (d) [3 marks] Let $f_1, \ldots, f_s \in F[x_1, \ldots, x_n]$ and $I = \langle f_1, \ldots, f_s \rangle$. Describe a method, making use of S-polynomials, to test whether or not $\{f_1, \ldots, f_s\}$ is a Gröbner basis for I (with respect to a fixed monomial order for $F[x_1, \ldots, x_n]$).
 - (e) [8 marks] Apply the algorithm GröbnerBasis to determine a Gröbner basis for the ideal $\langle xy-1, xz-1 \rangle$ of $\mathbb{Q}[x,y,z]$, with respect to lexicographic order with $x>_{\text{lex}}y>_{\text{lex}}z$.
 - (f) [6 marks] Let $I_1 \subseteq I_2 \subseteq \cdots$ be an ascending chain of ideals of $F[x_1, \ldots, x_n]$. Prove that there exists an integer $N \ge 1$ such that $I_N = I_{N+1} = \cdots$. (You may assume that every ideal of $F[x_1, \ldots, x_n]$ has a Gröbner basis.)
- 4. (a) [7 marks] Let $f, f_1, \ldots, f_s, g_1, \ldots, g_t \in F[x_1, \ldots, x_n], I = \langle f_1, \ldots, f_s \rangle$, and $J = \langle g_1, \ldots, g_t \rangle$. Explain precisely how to use Gröbner bases to determine:
 - (i) whether $f \in I$;
 - (ii) whether $I \subseteq J$;
 - (iii) whether I = J.
 - (b) [6 marks] Let I be an ideal of $F[x_1, \ldots, x_n]$ and $j \in \{0, \ldots, n-1\}$. Define what is meant by the j-th elimination ideal I_j , and prove that I_j is an ideal of $F[x_{j+1}, \ldots, x_n]$.
 - (c) [2 marks] Let $j \in \{1, ..., n-1\}$. Define what is meant by a monomial order for $F[x_1, ..., x_n]$ of j-elimination type.
 - (d) [10 marks] Let $j \in \{1, ..., n-1\}$ and let G be a Gröbner basis for an ideal I of $F[x_1, ..., x_n]$, with respect to a monomial order \leq of j-elimination type. Prove that $G \cap F[x_{j+1}, ..., x_n]$ is a Gröbner basis for the j-th elimination ideal I_j (with respect to \leq restricted to $F[x_{j+1}, ..., x_n]$).

- 5. Let (v_1, \ldots, v_n) be a sequence of linearly independent vectors in \mathbb{R}^n .
 - (a) [2 marks] Define what is meant by the lattice with basis (v_1, \ldots, v_n) .
 - (b) [8 marks] Suppose L and M are lattices in \mathbb{R}^n , with respective bases (v_1, \ldots, v_n) and (w_1, \ldots, w_n) . Let V be the $n \times n$ matrix whose rows are v_1, \ldots, v_n and W be the $n \times n$ matrix whose rows are w_1, \ldots, w_n .
 - (i) Prove that if $L \subseteq M$ then there is an integer d such that $\det(V) = d \det(W)$.
 - (ii) Deduce that the *norm* of L, defined to be $|\det(V)|$, does not depend on the choice (v_1, \ldots, v_n) of basis for L.
 - (c) [7 marks] State precisely how to determine the *Gram-Schmidt orthogonalization* (or GSO) $((v_1^*, \ldots, v_n^*), M)$ of (v_1, \ldots, v_n) , and state the main properties of this GSO.
 - (d) [8 marks] Suppose L is a lattice with basis (v_1, \ldots, v_n) , and let $((v_1^*, \ldots, v_n^*), M)$ be the GSO of (v_1, \ldots, v_n) . Prove that if $0 \neq v \in L$, then $|v| \geq \min\{|v_1^*|, \ldots, |v_n^*|\}$.
- 6. (a) [2 marks] Define what is meant by a reduced basis for a lattice.
 - (b) [6 marks] Suppose (v_1, \ldots, v_n) is a reduced basis for a lattice L, and $0 \neq v \in L$. Prove that $|v_1| \leq 2^{(n-1)/2} |v|$. (You may assume the result of question 5(d) holds.)
 - (c) [5 marks] State precisely the input and output specifications of the algorithm BasisReduction.
 - (d) [12 marks] Describe the *subset sum problem*, and how the algorithm BasisReduction may be employed in an attempt to find a solution to this problem.