Queen Mary UNIVERSITY OF LONDON

M.Sci. EXAMINATION

MAS400 Advanced Algorithmic Mathematics

Tuesday 27 May 2003, $10:00 \,\mathrm{am} - 1:00 \,\mathrm{pm}$

The duration of this examination is three hours.

You may attempt as many questions as you wish and all questions carry equal marks. Except for the award of a bare pass, only the best four questions answered will be counted. Show your calculations.

Calculators are not permitted in this examination.

 \mathbb{N} denotes the set of non-negative integers, \mathbb{K} denotes a field, and |v| denotes the (Euclidean) length of a vector v.

- 1. (a) [6 marks] Write down an algorithm to divide a multivariate polynomial by a sequence of multivariate polynomials. Include precise specifications of the input and output.
 - (b) [7 marks] From this algorithm, deduce an algorithm to divide one univariate polynomial by another, including precise specifications of the input and output. Outline the steps in your deduction.
 - (c) [5 marks] Divide $x^5 + x^2$ by $2x^2 + x 1$ in $\mathbb{Q}[x]$.
 - (d) [7 marks] Divide $x^5y^2 + x^3y + 2x^2 + xy + 1$ by xy + 1, x + y in $\mathbb{Q}[x, y]$ using lexicographic ordering with $x >_{\text{lex}} y$.
- 2. (a) [2 marks] Define what is meant by a basis for an ideal.
 - (b) [2 marks] Define what is meant by a monomial ideal.
 - (c) [4 marks] Prove that $\langle x(x-y), y(x+y), (x-y)^2 \rangle \subseteq \mathbb{Q}[x,y]$ is a monomial ideal.
 - (d) [5 marks] Let $A \subseteq \mathbb{N}^n$, $I = \langle x^{\alpha} \mid \alpha \in A \rangle \subseteq \mathbb{K}[x_1, \dots, x_n]$, and $\beta \in \mathbb{N}^n$. Prove that $x^{\beta} \in I$ if and only if x^{α} divides x^{β} for some $\alpha \in A$.
 - (e) [1 mark] State Dickson's Lemma.
 - (f) [2 marks] Define what is meant by a Gröbner Basis for an ideal.
 - (g) [4 marks] Prove that every ideal of $\mathbb{K}[x_1,\ldots,x_n]$ has a Gröbner Basis.
 - (h) [5 marks] Prove that a Gröbner Basis for an ideal is a basis for that ideal. [Hint: prove that the remainder vanishes in an appropriate generalized polynomial division.]

- **3.** (a) [2 marks] Define what is meant by the *S-polynomial* of two multivariate polynomials.
 - (b) [2 marks] State a condition in terms of S-polynomials for a basis to be a Gröbner Basis.
 - (c) [5 marks] State Buchberger's Algorithm to compute a Gröbner Basis. Include precise specifications of the input and output.
 - (d) Working in $\mathbb{Q}[x, y, z]$ and using lexicographic ordering with $x >_{\text{lex}} y >_{\text{lex}} z$:
 - (i) [3 marks] prove that $\{x-y, y^2+z\}$ is a Gröbner Basis for the ideal I that it generates;
 - (ii) [8 marks] compute a Gröbner Basis for $J = \langle x y, xy z \rangle$.
 - (e) [5 marks] With I and J defined as above, determine whether I = J and briefly explain your reasoning.
- **4.** (a) [8 marks] Define what is meant by the affine variety V(F) of a set F of multivariate polynomials and define what is meant by the affine variety V(I) of a multivariate polynomial ideal I. If I is generated by F, prove that V(I) = V(F).
 - (b) [6 marks] Define the term *elimination ideal* and define what it means for a monomial ordering to be of *j-elimination type*.
 - (c) [3 marks] Prove that lexicographic ordering is of j-elimination type for all (meaningful) values of j.
 - (d) [3 marks] State the *Elimination Theorem* for Gröbner Bases of elimination ideals.
 - (e) [5 marks] Given that, using lexicographic ordering with $x >_{\text{lex}} y >_{\text{lex}} z$, the set $\{x y, y^2 + z\}$ is a Gröbner Basis for the ideal $I \subseteq \mathbb{R}[x, y, z]$ that it generates, use the elimination ideal approach to determine $\mathbb{V}(I)$ explicitly. Explain your reasoning.

- 5. (a) [2 marks] Define what is meant by a lattice of rank r in \mathbb{R}^n .
 - (b) [3 marks] Define what is meant by a *Gram matrix* and define what is meant by the *determinant of a lattice*.
 - (c) [5 marks] Prove that the determinant of a lattice depends only on the lattice and not on its representation.
 - (d) [5 marks] State the *Gram-Schmidt orthogonalization process* and define what is meant by the *Gram-Schmidt coefficients*.
 - (e) Let $V = (\mathbf{v}_1, \dots, \mathbf{v}_r)$ be a sequence of vectors in \mathbb{R}^n and let $V^* = (\mathbf{v}_1^*, \dots, \mathbf{v}_r^*)$ be its Gram-Schmidt orthogonalization.
 - (i) [3 marks] Prove that $|\boldsymbol{v}_i^*| \leq |\boldsymbol{v}_i|$.
 - (ii) [3 marks] Express the relationship between V and V^* in the form of a matrix equation and state the structure of the matrices involved.
 - (iii) [2 marks] Deduce a bound on the determinant of the Gram matrix of V.
 - (iv) [2 marks] State and prove Hadamard's inequality for the determinant of an arbitrary square matrix.
- **6.** (a) [5 marks] Let L be a lattice of rank r in \mathbb{R}^n and let $(\boldsymbol{v}_1^*, \dots, \boldsymbol{v}_r^*)$ be the Gram-Schmidt orthogonalization of the lattice basis. Prove that each nonzero vector $\boldsymbol{v} \in L$ satisfies $|\boldsymbol{v}| \geq |\boldsymbol{v}_s^*|$ for some s, $1 \leq s \leq r$, and hence prove that $\min\{|\boldsymbol{v}|: 0 \neq \boldsymbol{v} \in L\} \geq \min\{|\boldsymbol{v}_s^*|: 1 \leq i \leq r\}$.
 - (b) [5 marks] Define what is meant by (i) a weakly reduced basis, and (ii) an LLL-reduced basis, for a lattice.
 - (c) If (v_1, \ldots, v_r) is an LLL-reduced basis for a lattice L with Gram-Schmidt orthogonalization (v_1^*, \ldots, v_r^*) , prove that:
 - (i) [5 marks] $|v_i^*|^2 \ge \frac{1}{2} |v_{i-1}^*|^2$;
 - (ii) [2 marks] $|v_i^*|^2 \ge 2^{1-i}|v_1|^2$;
 - (iii) [4 marks] $|v_1| \le 2^{(r-1)/2} \min\{|v| : 0 \ne v \in L\};$
 - (iv) [4 marks] $|v_1| \le 2^{(r-1)/4} \sqrt[r]{\prod_{i=1}^r |v_i^*|}$.