Queen Mary UNIVERSITY OF LONDON

B.Sc. EXAMINATION

MAS400 Advanced Algorithmic Mathematics

Friday 18 May 2001, 2:30 $\rm pm-5:30\,\rm pm$

The duration of this examination is 3 hours.

You may attempt as many questions as you wish and all questions carry equal marks. Except for the award of a bare pass, only the best four questions answered will be counted.

Calculators are not permitted in this examination.

Show your calculations.

The symbol \mathbb{K} denotes a field.

- (a) [6 marks] Define what is meant by *partially ordered*, *totally ordered* and *well* ordered sets.
 [3 marks] Give one example in each case, with a brief explanation, of a set that
 - (i) partially but not totally ordered;
 - (ii) totally but not well ordered;
 - (iii) well ordered.

is:

- (b) [4 marks] Define what is meant by monomial ordering and by lexicographic ordering on the ring K[x1,...,xn] of multivariate polynomials.
 [12 marks] Prove that lexicographic ordering is a monomial ordering.
- 2. [10 marks] Give an algorithm to divide one multivariate polynomial by a sequence of multivariate polynomials in $\mathbb{K}[x_1, \ldots, x_n]$, specifying the input and output precisely.

[8 marks] Sketch a proof that the algorithm terminates and, by using a loop invariant, that it is correct.

[5 marks] Apply the algorithm systematically to divide $f = x^2y + xy^2 + xy + y^2$ by $f_1 = xy + 1$, $f_2 = x + 1$ (in that order) using lexicographic ordering with x > y.

[2 marks] State a condition under which the result of this division algorithm is independent of the order of the polynomials in the divisor sequence.

- **3.** (a) [5 marks] Define what is meant by:
 - (i) an *ideal* of $\mathbb{K}[x_1,\ldots,x_n]$,
 - (ii) a generating set for an ideal of $\mathbb{K}[x_1, \ldots, x_n]$,
 - (iii) a monomial ideal.
 - (b) [8 marks] Define a *Gröbner Basis* for an ideal of $\mathbb{K}[x_1, \ldots, x_n]$. Prove that any finite basis of monomials for a monomial ideal is a Gröbner Basis for that ideal.
 - (c) [2 marks] Define what is meant by an S-polynomial.
 [7 marks] State Buchberger's Algorithm, specifying the input and output precisely.
 - (d) [3 marks] Prove that $\{xy 1, y^2 + 1\} \subseteq \mathbb{Q}[x, y]$ is not a Gröbner Basis for the ideal it generates in some appropriate ordering, which you must specify.
- 4. (a) [5 marks] Explain precisely how to use Gröbner Bases to determine:
 - (i) whether $f \in \mathbb{K}[x_1, \dots, x_n]$ is in an ideal $I \subseteq \mathbb{K}[x_1, \dots, x_n]$;
 - (ii) whether I = J, where I, J are ideals of $\mathbb{K}[x_1, \ldots, x_n]$.
 - (b) [2 marks] Define the term *Principal Ideal Domain* (PID). [8 marks] Prove that $\mathbb{K}[x]$ is a PID and that $\mathbb{K}[x_1, \ldots, x_n]$ is not a PID if n > 1.
 - (c) [2 marks] Define the term *reduced* when applied to a Gröbner Basis.
 - (d) [8 marks] Let $I = \langle x^2+1, x^3-x^2+x-1, x^4+2x^2+1 \rangle$, $J = \langle x^2, x^3+x^2+x+1, x^4-1 \rangle$ be ideals of $\mathbb{K}[x]$. Find (in any way you wish) *reduced* Gröbner Bases for I and J. Determine, with brief explanations, which of the following statements are true: I = J; $x^3 + x \in I$; $x \in J$.
- 5. [5 marks] Let $V = v_1, \ldots, v_r$ be a non-empty linearly independent sequence of vectors in \mathbb{R}^n . State the Gram-Schmidt orthogonalization process, which generates a new sequence $V^* = v_1^*, \ldots, v_r^*$ of pairwise orthogonal vectors.
 - [5 marks] Prove that the vectors in V^* above are indeed pairwise orthogonal.

[5 marks] Prove that $|\boldsymbol{v}_i^*| \leq |\boldsymbol{v}_i|$ for $i = 1, \ldots, r$, where $|\boldsymbol{v}|$ denotes $\sqrt{\boldsymbol{v} \cdot \boldsymbol{v}}$.

[5 marks] Show that V and V^{*} are related, as columns of row vectors, by $V = T V^*$, and give the structure of the matrix T as fully as possible.

[5 marks] Hence, prove Hadamard's inequality, in the form

$$\left|\det \left(egin{array}{c} oldsymbol{v}_1 \ dots \ oldsymbol{v}_n \end{array}
ight)
ight| \leq \prod_{i=1}^n |oldsymbol{v}_i|$$

by considering the above theory for the special case r = n.

[Next question overleaf.]

6. (a) [9 marks] Let v₁ = (1, -2, 3), v₂ = (2, 5, -3), and let L be the lattice with basis {v₁, v₂}. Apply the LLL algorithm to (v₁, v₂) to determine an LLL-reduced ordered basis for the lattice L. Explain your calculations briefly in terms of the steps of the algorithm.
[8 marks] Compute the determinant of the lattice L and use this determinant to

make a partial check on the correctness of your basis reduction computation.

(b) [8 marks] Let L be a lattice with ordered basis $(\boldsymbol{v}_1, \ldots, \boldsymbol{v}_r)$ and let $m \in \mathbb{Z}$. Prove that the sequence $(\boldsymbol{v}_1, \ldots, \boldsymbol{v}_{i-1}, \boldsymbol{v}_i - m\boldsymbol{v}_j, \boldsymbol{v}_{i+1}, \ldots, \boldsymbol{v}_r)$ with $1 \leq j < i \leq r$ is an ordered basis for L having the same Gram-Schmidt orthogonalization as $(\boldsymbol{v}_1, \ldots, \boldsymbol{v}_r)$.