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Abstract. We study the existence of solutions g to the functional inequality

f ≤ g ◦ T − g + β where f is a prescribed continuous function, T is a weakly

expanding transformation of the circle having an indifferent fixed point, and
β is the maximum ergodic average of f . Using a method due to T. Bousch

we show that continuous solutions g always exist when the Hölder exponent
of f is close to 1. In the converse direction, we construct explicit examples of

continuous functions f with low Hölder exponent for which no continuous so-

lution g exists. We give sharp estimates on the best possible Hölder regularity
of a solution g given the Hölder regularity of f .

AMS subject classification: primary 37E10, 37D25, 37A99.

1. Introduction

Let T : X → X be a discrete dynamical system, and letMT be the set of all Borel
probability measures which are invariant under the map T . For a given continuous
function f : X → R, define the maximum ergodic average β(f) by

β(f) = sup
µ∈MT

∫
f dµ,

and say that ν ∈MT is a maximising measure for f if it satisfies
∫
f dν = β(f). The

study of maximising measures has recently become the focus of significant research
interest. While early articles of T. Bousch and O. Jenkinson [2, 14] were motivated
by abstract questions relating to the geometric structure of the set of measures
MT , questions relating to maximising measures have also appeared in research
into chaotic control [13, 25], Livšic-type theorems [6], thermodynamic formalism
[9, 15, 16], Tetris heaps [7], and the Lagarias-Wang finiteness conjecture in linear
algebra [7].

This article is concerned with a key technical tool arising in the study of max-
imising measures, which we call the Mañé-Conze-Guivarc’h lemma. A lemma of this
type takes the following form: given a continuous function f : X → R with some
prescribed regularity, under suitable dynamical hypotheses, we show that there ex-
ists a continuous function g : X → R with the property that f ≤ g ◦ T − g + β(f).
This relation is equivalent to the statement that there exists continuous g such that
sup(f + g − g ◦ T ) = β(f). Conze and Guivarc’h’s version of this lemma may be
found in the unpublished manuscript [10]. It has been noted that theorems of a
similar character occur in the field of optimal control, e.g. [1, 17]; this relationship
is examined in T. Bousch’s recent preprint [5].

We briefly describe the immediate implications of this result. Firstly, rewrite the
aforementioned inequality in the form f = g◦T−g+β(f)−r, where r is continuous
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and satisfies r ≥ 0. We then obtain
∫
f dν = β(f)−

∫
r dν for every ν ∈MT , and so

ν is maximising for f if and only if
∫
r dµ = 0. Since r(x) ≥ 0 for all x, we conclude

that the maximising measures of f are precisely those invariant measures ν whose
support lies in the compact set r−1(0). This leads to the subordination principle
described by T. Bousch [3]: if invariant measures µ, ν satisfy supp ν ⊆ suppµ and
µ is a maximising measure for f , then the ‘subordinate’ measure ν is maximising
also. It has been shown that this subordination principle can fail to hold when the
regularity of f is relaxed [6].

A particularly interesting application of the Mañé-Conze-Guivarc’h lemma is a
recent result of T. Bousch [4] which shows that for dynamical systems satisfying a
Mañé-Conze-Guivarc’h lemma, measures supported on periodic orbits are the only
maximising measures which persist under Lipschitz perturbations of the observable
f . A similar result which was previously shown by G. Yuan and B. R. Hunt under
more restrictive dynamical assumptions [25]. Mañé-Conze-Guivarc’h type lemmas
have also been found useful in circumstances not a priori related to maximising
measures [20].

When T : X → X is an expanding map, a subshift of finite type, or an Anosov
diffeomorphism, and f : X → R is Hölder continuous, it is known that we can
always find g : X → R Hölder continuous such that f ≤ g ◦T − g+ β(f) is satisfied
[3, 11, 19, 22]. The purpose of the present article is to examine the extension of this
result to a simple class of non-uniformly hyperbolic dynamical systems on the circle,
namely the case in which T is uniformly expanding except in the neighbourhood of
a weakly repelling fixed point.

Previously, it was shown by R. Souza [23] that for an expanding map T : [0, 1]→
[0, 1] with a weakly repelling fixed point, a Mañé-Conze-Guivarc’h lemma may be
proved when f is Hölder continuous and monotone in some neighbourhood of the
indifferent fixed point z, and additionally satisfies

∫
f dν− < f(z) <

∫
f dν+ for

some ν−, ν+ ∈ MT . Prior to the research described in this article, S. Branton has
shown that when f is Lipschitz continuous, Souza’s conditions may be removed [8].
In this article, using a different method to S. Branton, we study the case in which
f is Hölder, and prove a complementary result which shows that solutions can fail
to exist in certain cases when f is Hölder continuous with exponent close to 0.

Let T = R mod Z with metric d inherited from the standard metric on R. The
precise class of maps T : T→ T which we study is as follows:

Definition 1.1. For each α > 0 we say that a continuous function T : T → T is
an expanding map of Manneville-Pomeau type α if it fixes 0, is differentiable with
derivative greater than 1 in the interval T \ {0}, and satisfies

T ′(x) = 1 + ξxα + o(xα) as x→ 0+,

lim inf
x→1−

T ′(x) > 1

for some ξ > 0.

The archetypal map T represented by this definition is the Manneville-Pomeau
map defined by x 7→ x + x1+α mod 1. Expanding maps of Manneville-Pomeau
type are studied in, for example, [12, 18, 24].

For each γ ∈ (0, 1], let Hγ denote the space of all γ-Hölder continuous real-
valued functions on the circle T, and define |f |γ = supx6=y |f(x)−f(y)|/d(x, y)γ for
f ∈ Hγ . The set Hγ is a Banach space when equipped with the norm ‖ · ‖γ given
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by ‖f‖γ := |f |∞+ |f |γ . Using a method based on Young towers, S. Branton proved
the following:

Theorem ([8]). Let T : T → T be an expanding map of Manneville-Pomeau type
α ∈ (0, 1). Then for every f ∈ H1 and δ ∈ (0, 1− α) there exists g ∈ H1−α−δ such
that f ≤ g ◦ T − g + β(f).

We are able to establish:

Theorem 1. Let T : T → T be an expanding map of Manneville-Pomeau type
α ∈ (0, 1) and suppose that α < γ ≤ 1. Then for every f ∈ Hγ there exists
g ∈ Hγ−α such that f ≤ g ◦ T − g + β(f). In addition, the function g satisfies the
functional equation

g(x) + β(f) = max
Ty=x

[f(y) + g(y)] .

Further, we are able to show that Theorem 1 is sharp both in the regularity of
f and in the regularity of g.

Theorem 2. Let T : T → T be an expanding map of Manneville-Pomeau type
α ∈ (0, 1) and suppose that 0 < α < γ ≤ 1. Then the following hold:

(a) There exists f ∈ Hγ such that if f ≤ g ◦ T − g + β(f) for g ∈ Hθ, then
θ ≤ γ − α.

(b) There exists f ∈ Hα such that f ≤ g ◦ T − g + β(f) is not satisfied for
any continuous function g.

In a recent article, T. Bousch proves the following theorem, which extends a
result of Yuan and Hunt [25]:

Theorem ([4]). Let T : X → X be a continuous surjection of a compact metric
space. Suppose that for all f ∈ H1, there exists g ∈ H1 such that f ≤ g◦T−g+β(f)
and |g|1 ≤ C|f |1 for some C > 0 independent of f . Suppose also that µ ∈MT is a
maximising measure for every element of some nonempty open set U ⊂ H1. Then
µ is supported on a periodic orbit of T .

We remark that while uniformly expanding dynamical systems have been shown
to satisfy the hypotheses of this theorem (see [3, 11, 22]), Theorem 2(a) demon-
strates that the required hypotheses do not hold for maps of Pomeau-Manneville
type.

2. Proof of Theorem 1

We use a fixed point method occurring in the work of Bousch [2, 4]. We begin
with the following lemma:

Lemma 2.1. Let T be of Manneville-Pomeau type α, and let z1, z2 ∈ T with
d(z1, z2) sufficiently small. Then

d(Tz1, T z2) ≥ d(z1, z2) (1 + C0d(z1, z2)α)

for some constant C0 depending only on T .

Proof. We consider separately the cases in which the shortest arc connecting z1 and
z2 does, or does not, contain 0.
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We begin with the latter case. Choose representatives a1, a2 ∈ [0, 1) of z1, z2 ∈ T
respectively, assuming without loss of generality that 0 ≤ a1 ≤ a2 < 1. If d(z1, z2)
is small enough then

d(Tz1, T z2) =
∫ z2

z1

|T ′(s)| ds ≥
∫ a2

a1

1 + ρ0s
α ds

≥ (a2 − a1) + ρ1(a2 − a1)1+α = d(z1, z2) + ρ1d(z1, z2)1+α

for some small ρ0, ρ1 > 0 not depending on z1 and z2. This completes the proof in
this case.

Now suppose that 0 lies in the arc connecting z1 and z2, with the triple (z1, 0, z2)
being positively oriented. Arguing as previously we have d(Tz2, 0) ≥ d(z2, 0) +
ρ1d(z2, 0)1+α. Since T has derivative bounded away from 1 in any small interval of
the form (−δ, 0), there is ρ2 > 0 such that d(Tz1, 0) ≥ (1+ρ2)d(z1, 0) when d(z1, 0)
is small enough. Combining these estimates yields

d(Tz1, T z2) = d(Tz1, 0) + d(0, T z2) ≥ d(z1, z2) + ρ1d(z2, 0)1+α + ρ2d(z1, 0).

If we take C0 = min{ρ1/21+α, ρ2/2} then by separating the cases d(z1, 0) ≥ d(z2, 0)
and d(z1, 0) ≤ d(z2, 0) we obtain

ρ1d(z2, 0)1+α + ρ2d(z1, 0) ≥ C0d(z1, z2)1+α

for every sufficiently close choice of z1 and z2 separated by 0. Combining the above
two inequalities completes the proof. �

Lemma 2.2. Let T be of Manneville-Pomeau type α, and let γ ∈ (α, 1]. Then there
exists Cγ > 0 with the following property: for every x1, x2, y1 ∈ T with Ty1 = x1,
we may choose y2 ∈ T−1{x2} such that

(1) d(y1, y2)γ−α + Cγd(y1, y2)γ ≤ d(x1, x2)γ−α

Proof. Given x1, x2, y1 ∈ T with Ty1 = x1, we claim that there exists y2 ∈ T−1{x2}
such that

(2) d(y1, y2)(1 + ρ3d(y1, y2)α) ≤ d(x1, x2)

for some ρ3 > 0 independent of x1, x2, y1. Taking ρ4 = (1 + ρ3)γ−α − 1 > 0 we
have (1 + ρ3t)γ−α ≥ 1 + ρ4t for all t ∈ [0, 1]. Applying this to (2) yields (1) with
Cγ = ρ4.

We begin by noting that T expands sufficiently long intervals by a uniform factor:
for every δ > 0, there exists Kδ > 0 such that if d(x1, x2) ≥ δ, then y2 may be
chosen with

(1 +Kδ)d(y1, y2) ≤ d(x1, x2).
Thus given some fixed δ > 0, (2) holds for every case in which d(x1, x2) ≥ δ by
taking ρ3 ≤ Kδ. On the other hand, if d(x1, x2) < δ for some sufficiently small
fixed δ > 0, we may choose y2 ∈ T−1{x2} with d(y1, y2) ≤ d(x1, x2) < δ and apply
Lemma 2.1 to obtain

d(y1, y2)(1 + C0d(y1, y2)α) ≤ d(x1, x2)

so that taking ρ3 = min{Kδ, C0} completes the proof. �

We now prove Theorem 1. Let γ ∈ (α, 1], and define a subset of C(T) by

K =
{
g ∈ Hγ−α : |g|γ−α ≤ C−1

γ |f |γ
}
,
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where Cγ > 0 is as in Lemma 2.2. Let K0 = K/R, the set of equivalence classes of
element of K modulo addition of a constant. Clearly K0 is compact with respect to
uniform distance. For each g ∈ K, define Lfg ∈ C(T) by (Lfg)(x) = maxTy=x(f +
g)(y). We assert that Lf is a continuous transformation of K with respect to
uniform distance.

Given x1, x2 ∈ T, choose y1 ∈ T−1x1 such that (Lfg)(x1) = (f+g)(y1). Invoking
Lemma 2.2 we may choose y2 ∈ T−1x2 such that (1) holds and therefore

(Lfg)(x1)− (Lfg)(x2) ≤ (f + g)(y1)− (f + g)(y2)

≤ |f |γd(y1, y2)γ + |g|γ−αd(y1, y2)γ−α

≤ C−1
γ |f |γd(x1, x2)γ−α.

We conclude that |Lfg|γ−α ≤ C−1
γ |f |γ for all g ∈ K and therefore LfK ⊆ K. A

simple argument shows that |Lfg1 − Lfg2|∞ ≤ |g1 − g2|∞ for g1, g2 ∈ K so that
Lf is a continuous tranformation of K. It follows that Lf induces a continuous
transformation of K0. By the Schauder-Tychonoff theorem there therefore exists
h ∈ K such that Lfh = h mod R. Let b ∈ R be chosen such that h(x) = b +
maxTy=x(f + h)(y) for all x ∈ T; a simple argument as in [2] shows that b = β(f).
The proof of Theorem 1 is complete.

3. Proof of Theorem 2

In this section we will take the liberty of using the fundamental domain [0, 1)
as a model for T and treating T as a map [0, 1) → [0, 1) in the obvious fashion.
Let u1 = min{u ∈ (0, 1) : Tu = 0}, and define a sequence (un)n≥1 in [0, 1) by
un := min{u ∈ (0, 1) : Tu = un−1}. We require two simple lemmas:

Lemma 3.1. There is C1 > 1 such that for all n ≥ 1,

C−1
1 n−1−1/α ≤ un − un+1 ≤ C1n

−1−1/α

and
C−1

1 n−1/α ≤ un ≤ C1n
−1/α.

Proof. This follows from the relation Tun − un = ξu1+α
n + o(un)1+α in a fairly

straightforward fashion, see e.g. [24]. �

Lemma 3.2. Let f : [0, 1) → R. Suppose that f(0) = 0, that there is C > 0 such
that for all κ ∈ (0, 1),

|f(κ)| ≤ Cκγ1

and

sup
x,y∈[κ,1]
x 6=y

|f(x)− f(y)|
|x− y|

≤ Cκ−γ2 ,

where γ1, γ2 > 0 and γ1 + γ2 ≥ 1. Then f is γ1
γ1+γ2

-Hölder continuous throughout
[0, 1).

Proof. Let 0 ≤ x < y < 1 and let λ = y−γ1−γ2(y − x) and γ = γ1
γ1+γ2

. If λ > 1/2
then yγ1+γ2 < 2(y − x) and hence

|f(x)− f(y)| ≤ |f(x)|+ |f(y)| ≤ 2Cyγ1 < 21+γC|y − x|γ .
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If otherwise then y − x = λyγ1+γ2 ≤ λy ≤ y/2 so that 0 < y ≤ 2x and hence

|f(x)−f(y)| ≤ Cx−γ2(y−x)1−γ(y−x)γ = Cλ1−γ
(y
x

)γ2
(y−x)γ ≤ 2γ−1+γ2C(y−x)γ

as required. �

3.1. Proof of part (a). Given 0 < α < γ ≤ 1, let Kγ = C1

∑∞
n=1 n

−γ/α < ∞.
Define f(x) = xγ for all x ∈ [0, u3], f(x) = −K for all x ∈ [u2, u1], and define f
by linear interpolation in the intervals [u3, u2] and [u1, 1) subject to the constraint
limx→1 f(x) = 0 which ensures that f yields a continuous function T → R. Note
that f(x) ≤ uγk when uk+1 ≤ x ≤ uk and that f ∈ Hγ .

We claim that β(f) = 0. Since the Dirac measure δ0 is invariant and f(0) = 0
it is clear that β(f) ≥ 0. By a lemma of Y. Peres [21] there exists x ∈ T such
that

∑n−1
j=0 f(T jx) ≥ nβ(f) for all n ≥ 0, and so to prove that β(f) ≤ 0 it is

sufficient for us to show that for each x ∈ [0, 1] we may find v(x) > 0 such that∑v(x)−1
j=0 f(T jx) ≤ 0.
If x = 0 or x ∈ [u2, 1) then clearly we may take v(x) = 1. Otherwise we have

x ∈ Ur for some r ≥ 2. Applying Lemma 3.1 we have
r∑
j=0

f(T jx) ≤
r−1∑
j=0

(
T jx

)γ −K ≤ r∑
k=1

uγk −K ≤ C1

∞∑
k=1

k−γ/α −K = 0

so that taking v(x) = r + 1 proves the claim.
Now suppose that f ≤ g ◦ T − g + β(f) where g ∈ Hθ. For every n > 0 and

r ≥ 3, we have

g(un+r) +
n−1∑
j=0

f(T jun+r) ≤ g(Tnun+r),

and therefore

g(ur) ≥
r+n∑
k=r+1

f(uk) + g(un+r) ≥ C−1
1

r+n∑
k=r+1

k−γ/α + g(un+r).

Taking the limit as n→∞ it follows that

g(ur) ≥ C−1
1

∞∑
k=r+1

k−γ/α + g(0) ≥ C̃r1−γ/α + g(0),

and therefore

C̃r−1−γ/α ≤ |g(0)− g(ur)| ≤ |g|θuθr ≤ |g|θCθ1r−θ/α

for every r ≥ 3. We deduce that θ ≤ γ − α. �

3.2. Proof of part (b). Define f(0) = 0, f(x) = 0 for all x ∈ [u1, 1), and for each
n ≥ 0

f(u24n) = f(u24n+2) = 0

f(u24n+1) = −2−4n

f(u24n+3) = τ2−4n,

where τ ∈ (0, 1) is a real number to be fixed later. Extend f to the whole of [0, 1)
by interpolating linearly in each interval [u24n+k+1 , u24n+k ].
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We will show that f is α-Hölder. Suppose that u24n+4 ≤ κ ≤ u24n for some
n ≥ 0; then,

(3) |f(κ)| < 2−4n ≤ Cα1 uα24n ≤ Cα1 κα.

We must estimate the Lipschitz norm of f in the interval [κ, 1). We will require
the simple lower bound

u2r+1 − u2r =
2r−1∑
`=0

u2r+`+1 − u2r+` ≥
2r+1−1∑
k=2r

C−1
1 k−1−1/α

≥ C̃
(

2−r/α − 2−(r+1)/α
)
≥ C̃2−r/α

for all r > 0, where we have used Lemma 3.1. It follows that when u24n+4 ≤ κ ≤
u24n , the gradient of f in [κ, 1) is bounded by

(4) sup
0≤k≤n
0≤`<4

2−4k

|u24k+`+1 − u24k+` |
≤ sup

0≤k≤n
0≤`<4

2−4k

C̃2−(4k+`)/α
= C̃2−4k+4k/α ≤ C̃κα−1.

Combining estimates (3) and (4) with Lemma 3.2 we deduce that f ∈ Hα.
We next compute β(f). Since f(0) = 0 and the Dirac measure δ0 is T -invariant,

we have β(f) ≥ 0. To prove that β(f) = 0 we proceed as in part (a) by showing
that for each x ∈ [0, 1), there is v(x) > 0 such that

∑v(x)−1
j=0 f(T jx) ≤ 0.

If x ≥ u2, or x = 0, or if u24n+2 ≤ x ≤ u24n for some n > 0, then f(x) ≤ 0 and
we may take v(x) = 1. We may therefore restrict our attention to the case in which
u24n+4 < x < u24n+2 for some n ≥ 0. Assuming this, suppose that

u24n+2+k+1 ≤ x ≤ u24n+2+k,

where 0 ≤ k < 24n+4 − 24n+2. We choose v(x) = k + 24n+1 + 2. Firstly we note
that

(5)
k∑
j=0

f(T jx) ≤ τk2−4n ≤ 12τ.

Using the monotonicity of f in [u24n+1 , u24n ], we obtain

k+24n+1+1∑
j=k+1

f(T jx) ≤
24n+1∑
`=0

f(u24n+1+`) = −
24n+1∑
`=1

2−4n |u24n+1 − u24n+1+`|
|u24n+1 − u24n+2 |

≤ −
24n+1∑
`=1

2−4nu−1
24n+1 (u24n+1 − u24n+1+`)

≤ −C−1
1 2−1/α−4n+4n/α

24n+1∑
`=1

`−1∑
j=0

(
u24n+1+j − u24n+1+j+1

)
≤ −C−2

1 2−1/α−4n+4n/α
24n+1∑
`=1

`2−(4n+2)(1+1/α)

≤ − 1
C2

122+3/α
2−8n

24n+1∑
`=1

` ≤ − 1
C2

125+2/α
= −ε < 0,



8 IAN D. MORRIS

say, where we have twice used Lemma 3.1. Combining this with (5) we deduce that∑v(x)−1
j=0 f(T jx) ≤ max {0, 12τ − ε} for each x ∈ [0, 1) and so if τ is taken smaller

than ε/12 then β(f) = 0.
Our final task is to show that the relation f ≤ g ◦ T − g+ β(f) is impossible for

continuous g. Following the method of the preceding estimate, for each n > 0 we
have

24n+3∑
`=24n+2

f(u`) ≥ τ
24n+2∑
`=1

2−4n |u24n+2 − u24n+2+`|
|u24n+2 − u24n+3 |

≥ τC̃2−4n+4n/α
24n+2∑
`=1

`−1∑
j=0

(
u24n+2+j − u24n+2+j+1

)
≥ τC̃2−8n

24n+2∑
`=1

` ≥ δτ > 0,

say. Suppose now that f ≤ g ◦ T − g + β(f) is satisfied. Then for each n > 0 we
have

g(u24n+2) ≥ g(u24n+3) +
24n+3−24n+2∑

j=0

f(T ju24n+3) ≥ g(u24n+3) + δτ .

If g is continuous at 0, then letting n→∞ yields

g(0) ≥ g(0) + δτ > g(0),

a contradiction. �
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