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A SUFFICIENT CONDITION FOR THE SUBORDINATION

PRINCIPLE IN ERGODIC OPTIMIZATION

I.D. MORRIS

Abstract

Let T : X → X be a continuous surjection of a topological space, and let f : X →
�

be upper
semi-continuous. We wish to identify those T -invariant measures µ which maximize

∫
fdµ. We call

such measures f-maximizing, and denote the maximum by β(f). The study of such measures and
their properties has recently been dubbed ergodic optimization.

A first step to understanding the structure of a function’s maximizing measures is to establish
the following subordination principle defined by T. Bousch: if µ and ν are T -invariant measures
such that supp ν ⊆ supp µ and µ is f-maximizing, then ν is also f-maximizing. Previous authors
have approached this result by constructing a continuous function g : X →

�
such that f −β(f) ≤

g ◦ T − g. We provide a sufficient condition for the subordination principle which has advantages
when the space X is noncompact.

1. Introduction

Let T : X → X be a continuous surjection of a topological space, and let MT

denote the set of all T -invariant Borel probability measures on X . Let f : X → �

be upper semi-continuous. We define the maximum integral of f to be β(f) :=
supµ∈MT

∫
fdµ, and say that an invariant measure µ is maximizing if

∫
fdµ = β(f).

We wish to study the set of f -maximizing invariant measures, which we denote by
Mmax(f).

We say that the maximizing measures of f satisfy the subordination principle [3]
if the following property holds: if ν ∈ MT , µ ∈ Mmax(f) and supp ν ⊆ suppµ,
then ν ∈ Mmax(f). We say that a closed set K ⊆ X is a maximizing set for f if it
has the property that µ ∈ MT is f -maximizing if and only if suppµ ⊆ K. It is not
difficult to see that the existence of an f -maximizing set implies the subordination
principle.

In the existing literature on maximizing measures, the subordination principle
has exclusively appeared as a corollary of the following type of result: if f : X → �

satifies some form of regularity (for example, f is Hölder continuous with respect
to some natural metric) then there is a continuous g such that f −β(f) ≤ g ◦T −g;
theorems of this type are widespread in the literature, see e.g. [3, 5, 7, 8]. From
such a result it then follows that f − β(f) = g ◦ T − g + r for some continuous
(or upper semi-continuous) function r ≤ 0, whereupon we see that the closed set
K := r−1{0} is f -maximizing. Hence, if supp ν ⊆ suppµ and µ is maximizing,
supp ν ⊆ K and ν is maximizing. In hyperbolic situations, constructions of this
type succeed for a large class of ‘regular’ functions [3], but it is known that the
subordination principle fails in a residual subset of continous functions [4].

(In fact, in the above situation we use only the facts that
∫

(g ◦ T − g) dµ = 0
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for all µ ∈ MT and g ◦ T − g is continuous, and so do not really use the fact that
g ◦ T − g is a coboundary. We discuss some implications of this fact in section 3.)

A natural question is to examine the extent to which the subordination principle
necessitates the existence of a continuous coboundary g ◦ T − g ≥ f − β(f). In this
note, we provide a new sufficient condition for the subordination principle which,
in the case where the space X is compact, is strictly weaker than the existence of
such a coboundary.

For n > 0 we write Snf :=
∑n−1

j=0 f ◦ T j . Our principal result is the following:

Theorem 1. Let f : X → �
be upper semi-continuous with β(f) 6= ±∞, and

suppose that supn≥1 supx∈X Sn[f − β(f)](x) < ∞. Then Mmax(f) satisfies the
subordination principle.

In section 2 of this note we prove Theorem 1, and deduce the existence of a
closed f -maximizing set. We also provide an application to the ergodic optimization
of countable-state subshifts of finite type as studied in [7]. In section 3, we prove
two supplementary propositions: firstly, that the hypotheses of the theorem do not
imply the existence of g ∈ C(X) such that f −β(f) ≤ g ◦T − g; and secondly, that
the converse of the theorem is false.

An overview of existing results in ergodic optimization may be found in [6].

2. Proof and applications of Theorem 1

Proof. We will prove the following statement: if ν, µ ∈ MT satisfy supp ν ⊆
suppµ and

∫
fdν < β(f), then

∫
fdµ < β(f). We assume without loss of generality

that β(f) = 0. Let B ≥ supn≥1 supx∈X Snf(x) with B > 0.
Let ν, µ ∈ MT with supp ν ⊆ suppµ and

∫
fdν < 0. By the Birkhoff er-

godic theorem applied to ν, there exists at least one point x0 ∈ supp ν such that
limn→∞

1
n
Snf(x0) =

∫
fdν < 0; take N > 0 such that SNf(x0) ≤ −3B. Since f is

upper semi-continuous, there exists an open set U 3 x0 such that SNf(x) < −2B
for all x ∈ U .

By the ergodic decomposition theorem for measurable spaces [1, Theorem 2.2.8],
there is a probability space (Ω,F ,m) and a collection of T -invariant ergodic Borel
probability measures {µω : ω ∈ Ω} on X such that for every Borel set Z ⊆ X , the
map ω 7→ µω(Z) is F-measurable and

µ(Z) =

∫
Ω

µω(Z)dm(ω).

Suppose µω(U) > 0. For x ∈ U , define the sequence of return times rn(x) in the
following way: let r1(x) = 0, and for n ≥ 1 define rn(x) = inf{k > rn−1(x) : T

kx ∈
U}. Applying the ergodic theorem and Kac’s lemma to the ergodic measure µω, we
can find xω ∈ U such that as n→ ∞, rn(xω) ∼ n

µω(U) and 1
n
Snf(xω) →

∫
fdµω.

Let n > 0. The number of integers k satisfying 0 ≤ k ≤ rn(xω) such that
T kxω ∈ U is equal to precisely n. We may therefore choose an increasing sequence
of Mn = b n

N
c integers (ni)

Mn

i=1 with the following properties: n1 = 0, nMn
= rn(xω),

and for each i, T nixω ∈ U and ni+1 ≥ ni +N . Using our hypothesis that Snf ≤ B
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together with the definition of U we obtain

Srn(xω)f(xω) =

Mn−1
∑

i=1





ni+N−1
∑

j=ni

f(T jxω) +

ni+1−1
∑

j=ni+N

f(T jxω)





≤
Mn−1
∑

i=1

(−2B +B) = −B(Mn − 1)

for each n > 0. Hence∫
fdµω = lim

n→∞

1

rn(xω)
Srn(xω)f(xω)

≤ lim
n→∞

−B(Mn − 1)

rn(xω)

= lim
n→∞

− Bn

Nrn(xω)
= −B

N
µω(U),

whenever µω(U) > 0. It follows from x0 ∈ U ∩ suppµ and the fact that U is open
that µ(U) > 0, and therefore,∫

fdµ =

∫
Ω

∫
fdµωdm(ω)

=

∫
{ω : µω(U)>0}

∫
fdµωdm(ω) +

∫
{ω : µω(U)=0}

∫
fdµωdm(ω)

≤ −
∫
{ω : µω(U)>0}

B

N
µω(U)dm(ω) +

∫
{ω : µω(U)=0}

β(f)dm(ω)

= −B

N
µ(U) + 0 < 0.

This proves the theorem. �

Our result makes it easy to check the subordination principle for a large class of
observables in any dynamical system where the supply of periodic orbits is suffi-
ciently rich. Moreover, our method does not require functional-analytic construc-
tions which may become difficult when the space X is noncompact [7]. We provide
an example in the context of countable-state subshifts of finite type.

Let A : � × � → {0, 1} be an infinite matrix, and denote its (i, j)th entry of A
by [A]i,j . Define a set ΣA ⊆ � × � by

ΣA = {x = (xi)i≥1 : [A]xi,xi+1
= 1 for all i ≥ 1},

and let σ : ΣA → ΣA be the shift map defined by σ(xi)i≥1 = (xi+1)i≥1. We equip
ΣA with the standard metric

d
(

(xi)i≥1 , (yi)i≥1

)

= 2− inf{i : xi 6=yi},

which makes σ : ΣA → ΣA continuous. Finally, for f : ΣA → �
and j ≥ 1 we define

varj f = sup
{x,y∈ΣA : xi=yi ∀ 1≤i≤j}

|f(x) − f(y)| .

We have the following result:

Corollary 1. Suppose that the shift map σ : ΣA → ΣA is surjective, and that
the following property holds: there is an integer N > 0 such that for every i, j > 0
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we may find 0 < m(i, j) ≤ N such that [Am(i,j)]i,j ≥ 1. Suppose that f : ΣA → �

has
∑∞

j=1 varj f <∞ and |f |∞ <∞. Then f satisfies the subordination principle.

Proof. The maximum integral β(f) exists and is finite since |β(f)| ≤ |f |∞ <∞;
we assume without loss of generality that β(f) = 0. The condition on A implies
that for every x ∈ ΣA and n > 0, we may find a non-negative integer k < N and
periodic point p ∈ Fixn+k such that x and p agree in their first n symbols. Let
x ∈ ΣA and n > 0, and choose such a periodic orbit p. We have

Snf(x) = Sn+kf(x) − Skf(Tnx)

≤ Sn+kf(p) +

n
∑

j=1

varj f + 2k|f |∞ − k inf f

≤
∞
∑

j=1

varj f + 3N |f |∞,

where we have used Sn+kf(p) ≤ 0 since β(f) = 0. Applying Theorem 1 completes
the proof. �

We remark that while our assumptions on the matrix A are weaker than those
required in [7], our assumption that inf f > −∞ is not present in that article.

It is not difficult to see that the above argument may be applied whenever f
satisfies the Walters condition [3, 9] and the dynamical system T : X → X satisfies
the following property: for any ε > 0, there is Nε > 0 such that for every n > 0,
⋃n+Nε

i=n Fixi is an (n, ε)-spanning set [10].
It should also be noted that the property f − β(f) ≤ g ◦ T − g has implications

additional to the subordination principle. One particular such implication is the
existence of an f -maximizing set: if f − β(f) ≤ g ◦ T − g where g is continuous,
then the closed set {x ∈ X : f(x) = g(Tx) − g(x)} is f -maximizing. A priori, it is
not obvious whether or not the hypotheses of Theorem 1 imply the existence of an
f -maximizing set. In fact we have the following:

Proposition 1. Let f : X → �
be upper semi-continous, where X is a sepa-

rable metric space. Then an f -maximizing set exists if and only if f satisfies the
subordination principle.

Proof. The forward implication is simple: if an f -maximizing set K exists,
then µ ∈ Mmax(f) and supp ν ⊆ suppµ imply that supp ν ⊆ K so that ν is
f -maximizing.

Suppose that f satisfies the subordination principle. Since f is upper semi-
continuous and X is separable, Mmax(f) is closed and separable in the weak-*
topology [2]. Let (µn)n≥1 be a sequence of measures (not necessarily distinct) which
is dense in Mmax(f), and take µ :=

∑∞
n=1 2−nµn. Define K = suppµ; clearly, µ

is f -maximizing and K is T -invariant. We claim that ν ∈ Mmax(f) if and only if
supp ν ⊆ K.

If ν ∈ MT satisfies supp ν ⊆ K, then it is maximizing by the subordination
principle. Conversely, suppose that ν is maximizing. Since every µn clearly has
suppµn ⊆ suppµ, we have µn(K) = 1 for all n ≥ 1; but ν is a weak-* limit point
of (µn)n≥1 and K is closed, so ν(K) = 1. This completes the proof. �
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3. Relationship with other sufficient conditions

In this section we restrict our attention to compact spaces X .
By considering the remarks made in the introduction, we can discern three dis-

tinct sufficient conditions for an upper semi-continuous function f : X → �
to

satisfy the subordination principle: firstly, the boundedness hypothesis of Theorem
1; secondly, that f − β(f) ≤ h for some continuous coboundary h; and thirdly,
more generally, that f − β(f) ≤ w for some continuous w such that

∫
wdµ = 0 for

all µ ∈ MT . Following [4], we term such a function w a weak coboundary. This
motivates the following definitions:

Condition (B): supn≥1 supx∈X Sn[f − β(f)](x) <∞
Condition (C): f − β(f) ≤ g ◦ T − g for some g ∈ C(X)
Condition (W): f − β(f) ≤ w for some weak coboundary w ∈ C(X).

Clearly, if f satisfies condition (C), then it satisfies both (B) and (W). In this
section, we establish that in general, (B) does not imply (C), and (W) does not
imply (B). The former result shows that Theorem 1 has greater reach than previous
approaches to the subordination principle; the latter shows that the converse of
Theorem 1 is in certain cases false.

Remark 1. If f satisfies condition (B), then by defining ψf (x) := supn≥1 Sn[f−
β(f)](x) one may obtain f − β(f) ≤ ψf ◦ T − ψf , where ψf is bounded; however,
since ψ is not in general continuous (see below) the subordination principle does
not directly follow.

We will again construct our examples in the context of shift maps. For a natural
number k ≥ 2, let Σk = {1, 2, . . . , k} � , and let σ : Σk → Σk be the shift map
(xn)n≥1 7→ (xn+1)n≥1. We again use the metric

d
(

(xi)i≥1 , (yi)i≥1

)

= 2− inf{i : xi 6=yi},

which makes Σk compact. Both of the succeeding propositions hold true for arbi-
trary k ≥ 2, but are most simply stated in their respective forms.

Proposition 2. There exists f ∈ C(Σ3) which satisfies condition (B) but not
condition (C).

Proof. For k ≥ 1 let Ck be the set of all sequences (xi)i≥1 ∈ Σ3 such that
xi = 1 when 1 ≤ i ≤ 2k2, xi = 2 when 2k2 + 1 ≤ i ≤ 2k2 + k, and xi = 3 when
i = 2k2 + k + 1. Define

f =





∞
∑

k=1

1

k2

k2−1
∑

`=0

�
σ`Ck



 − �
{(xi)i≥1 : x1=3},

where
�

A denotes the characteristic function of the set A. The definition above
implies that if k1, k2 > 0 and 0 ≤ `1 < k2

1 , 0 ≤ `2 < k2
2 then the sets σ`1Ck1

and
σ`2Ck2

intersect only if k1 = k2 and `1 = `2. Since each σ`Ck is both closed and
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open, this ensures that the function 1
k2

∑k2−1
`=0

�
σ`Ck

is continuous with norm 1
k2 for

each k > 0. It follows that f is continuous.

We claim that β(f) = 0. If x does not lie in
⋃

k≥1

⋃k2−1
`=0 σ`Ck it is clear that

f(x) ≤ 0. If x ∈ σ`Ck where ` < k2, then by inspection one may calculate
∑n−1

j=0 f(σjx) ≤ 1 for all 0 ≤ n ≤ 2k2 + k − ` and
∑2k2+k−`

j=0 f(σjx) = 0. Thus
Snf(x) may not exceed 1 for any n ≥ 1 and x ∈ X . Consequently β(f) ≤ 0 by
the Ergodic Theorem, and since f is zero at the fixed point z := (1)n≥1 we have
β(f) = 0. Therefore, f satisfies Snf(x) ≤ nβ(f) + 1 for every x ∈ X and n ≥ 1,
which implies condition (B).

Suppose that f satisfies condition (C), that is that f ≤ g ◦ σ − g for some
g ∈ C(Σ3). For k ≥ 1 let xk ∈ Ck , noting that this implies Sk2f(xk) = 1. We have

g(T k2

xk) ≥ g(xk) + Sk2f(xk) = g(xk) + 1,

but since the sequences σk2

xk and xk both converge to z as k → ∞, we obtain
g(z) ≥ g(z) + 1, an absurdity. �

Let W (Σ2) denote the set of weak coboundaries, that is, continuous functions
w : Σ2 → �

such that
∫
wdµ = 0 for every µ ∈ Mσ . It is known [4] that W (Σ2)

equals the uniform closure of the set of coboundaries; in particular W (Σ2) is com-
plete with respect to the uniform metric. Clearly every w ∈W (Σ2) satisfies condi-
tion (W).

Proposition 3. The set of all f ∈ W (Σ2) which do not satisfy condition (B)
is residual in W (Σ2).

Proof. We first show that such an f exists, by adapting a construction due to
M. Zinsmeister which is described in [4]. Define φ :=

�
{x1=1} − �

{x1=2}, and let
(rn)n≥0 be any sequence of real numbers with the following properties:

(i) r0 = 0
(ii) rn+1 ≤ rn for all n ≥ 1
(iii)

∑∞
n=0 |rn − rn+1| <∞

(iv) supn≥1 nrn = +∞.

For example, we could take rn = 1/
√
n for n ≥ 1 and r0 = 0. Define

f :=

∞
∑

n=0

(rn − rn+1)φ ◦ σn,

which is continuous by (iii). It is a limit of coboundaries since, using (i),

n−1
∑

k=0

rk+1φ ◦ σk+1 −
n−1
∑

k=0

rk+1φ ◦ σk =

n
∑

k=1

(rk − rk+1)φ ◦ σk

+ r0φ− r1φ+ rn+1φ ◦ σn

= f −
∞
∑

k=n+1

(rk − rk+1)φ ◦ σk + rn+1φ ◦ σn,

which converges to f by (iii). This implies f ∈ W (Σ2).
For each m > 0, let pm = (pm

i )i≥1, where pm
i = 2 for 1 ≤ i ≤ m and pm

i = 1 for
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all i > m. Using (ii), we calculate

S2mh(p
m) =

∞
∑

n=0

2m−1
∑

j=0

(rn − rn+1)φ(σn+jpm)

=

m−1
∑

n=0

2nan +

∞
∑

n=m

2man

= 2

m−1
∑

n=0

(nrn − nrn+1) + 2mrm

≥ 2mrm;

but this is unbounded by (iv), so supk≥1 supx∈Σ2
Skh(x) = ∞ and f does not satisfy

(B).
The remainder of the proof follows easily. For n ≥ 1, define Kn := {w ∈

W (Σ2) : supk≥1 supx∈Σ2
(Skw)(x) ≤ n}. Clearly each Kn is closed, and f ∈W (Σ2)

satisfies (B) if and only if it lies in some Kn. We claim that each Kn has empty
interior.

Observe that if w ∈ Kn, then infk≥1 infx∈Σ2
(Snw)(x) ≥ −n; for, if not, we could

find N, ε > 0, x0 ∈ Σ2 and open U 3 x0 such that (SNw)(x0) ≤ −n − ε for all
x ∈ U , and by following the argument in Theorem 1 deduce that any invariant
measure µ such that µ(U) > 0 would satisfy

∫
wdµ < 0, contradicting w ∈W (Σ2).

Now let w ∈ Kn and ε > 0, and let f ∈ C(Σ2) be as above. We have

sup
k≥1

sup
x∈Σ2

Sk (w + εf) (x) ≥ inf
k≥1

inf
x∈Σ2

Skw(x) + ε sup
k≥1

sup
x∈Σ2

Skf(x)

≥ −n+ ε sup
k≥1

sup
x∈Σ2

(Skf)(x) = ∞,

which demonstrates that w+εf /∈ Kn, and soKn has empty interior. The conclusion
follows by Baire’s Theorem. �
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