
Lyapunov optimizing measures for C
1 expanding maps of the

circle

Oliver Jenkinson and Ian D. Morris

Abstract. For a generic C
1 expanding map of the circle, the Lyapunov maximizing measure

is unique, fully supported, and has zero entropy.

1. Introduction

Let T : T → T be a C1 expanding self-map of the circle T = R/Z, and let M(T ) denote
the set of T -invariant Borel probability measures. For any µ ∈ M(T ), its Lyapunov exponent
λT (µ) is defined by λT (µ) =

∫

log |T ′| dµ. Any m ∈ M(T ) satisfying

λT (m) = sup
µ∈M(T )

λT (µ) =: λ+(T )

is called a Lyapunov maximizing measure for T . Similarly, anym ∈ M(T ) satisfying λT (m) =
infµ∈M(T ) λT (µ) is called a Lyapunov minimizing measure for T . Since T is C1 and has no
critical points, log |T ′| is a continuous function on T, so the functional µ 7→ λT (µ) is continuous
with respect to the weak-∗ topology on M(T ). Since M(T ) is compact for this topology, it
follows that T has both a Lyapunov maximizing and a Lyapunov minimizing measure. In
this note we shall be concerned with typical properties of such measures. For simplicity we
shall only consider Lyapunov maximizing measures, though all our statements have obvious
analogues in the context of Lyapunov minimizing measures; the proofs of these analogues
involve only minor modifications of the arguments we present.

For any integer r ≥ 1, the set T r of Cr self-maps of T is complete with respect to the
metric dr(S, T ) = maxx∈T

∑r
k=0 |S

(k)(x) − T (k)(x)|. Let Er denote the set of Cr expanding
self-maps of T, i.e. those T ∈ T r such that minx∈T |T ′(x)| > 1. Since Er is open in T r, it is a
Baire space: that is, every countable intersection of open dense subsets of Er is dense in Er.

Recall that any set containing a countable intersection of open dense subsets is said to
be residual. If the set of those maps in Er satisfying some given property is residual, we say
that the property is a generic one in Er, and refer to a generic member of Er (i.e. any T ∈ Er

having the property).
It is easy to construct smooth expanding maps whose Lyapunov maximizing measure

is unique, and supported on a periodic orbit (e.g. T (x) = 2x + ε sin 2πx (mod 1) for small
ε > 0). Conjecturally, such maps are generic in Er, whenever r ≥ 2:

Conjecture 1. For r ≥ 2, a generic T ∈ Er has a unique Lyapunov maximizing measure,
and this measure is supported on a periodic orbit of T .

The following result constitutes a weakened version of Conjecture 1:

Theorem 1. For r ≥ 2, the set of those T ∈ Er with no fully supported Lyapunov
maximizing measure is an open and dense subset of Er.
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It turns out that the situation for r = 1 is rather different. The main purpose of this
article is to establish the following properties of Lyapunov maximizing measures for generic
members of E1:

Theorem 2. A generic member of E1 has a unique Lyapunov maximizing measure. This
measure is fully supported, and of zero entropy.

Despite Theorem 2, it is an open problem to explicitly exhibit an expanding map whose
Lyapunov maximizing measure is unique and fully supported.

The organisation of this article is as follows. After some preliminaries in §2, in §3 we
prove that a generic map in E1 has a unique Lyapunov maximizing measure, and that this
measure has zero entropy. In §4 we show that this unique Lyapunov maximizing measure is
fully supported. The short proof of Theorem 1 is included as §5.

2. Preliminaries

The set E1 is the disjoint union of the set E1
+ of orientation-preserving C1 expanding maps,

and the set E1
− of orientation-reversing C1 expanding maps. Although all results stated in

this paper are valid for the set E1, to economise space we often only prove the analogous
result for the set E1

+, i.e. we assume that expanding maps T satisfy T ′ > 1. In all cases the
full proof, covering both T ′ > 1 and T ′ < −1, involves only trivial modifications.

Let C(T) denote the space of continuous real-valued functions defined on T, equipped
with the Banach norm ‖f‖∞ = supx∈T |f(x)|. For continuous ϕ,ψ : T → T, define the metric
d0(ϕ,ψ) := maxx∈T |ϕ(x) − ψ(x)|. For each T ∈ E1 we define

L
+(T ) =

{

µ ∈ M(T ) :

∫

log |T ′| dµ = λ+(T )

}

.

As noted previously, L
+(T ) is non-empty. As a weak-∗ closed subset of M(T ), it is also

weak-∗ compact.
The following is a result of Sigmund [Sig].

Lemma 1. If T ∈ E1, and µ ∈ M(T ) is such that its support supp(µ) is a proper subset
of T, then there is a sequence µi ∈ M(T ), converging to µ in the weak-∗ topology, such that
each supp(µi) is a periodic orbit disjoint from supp(µ).

The following lemma may be deduced from the proof of [KH, Thm. 2.4.6]; for complete-
ness we include a condensed proof.

Lemma 2. If T, Ti ∈ E1 such that infi infx T
′
i (x) > 1 and d0(Ti, T ) → 0 as i → ∞,

then there exists a sequence of homeomorphisms ξi : T → T such that ξi ◦ Ti = T ◦ ξi for all
sufficiently large i, and such that d0(ξi, idT) → 0 and d0(ξ

−1
i , idT) → 0 as i→ ∞.

Proof. If T has degree k > 1 then so does Ti for i sufficiently large, and we may assume
this is the case for all i. Suppose infi infx T

′
i (x) ≥ γ > 1. Choose a fixed point p of T and

a sequence of points p(i) → p such that each p(i) is a fixed point of Ti. For each i, n > 0
define An(i) = T−n

i p(i) = {a0
n(i), a1

n(i), . . . , akn−1
n (i)}, where a0

n(i) = p(i) for each n, and the

points aj
n(i) are listed in order around the circle; for each n > 0 define An = T−np = {aj

n}

in the same manner. Note that if j, n are fixed then aj
n(i) → aj

n as i → ∞. Since Ti

and T are orientation-preserving k-fold self-coverings of the circle, Tia
jk+ℓ
n+1 (i) = aℓ

n(i) and

Tajk+ℓ
n+1 = aℓ

n whenever j, n > 0 and 0 ≤ ℓ < k (see [KH] for a detailed description). Since

Ti is expanding, supj |a
j
n(i) − aj+1

n (i)| ≤ γ−n, so for each i the set ∪n>0An(i) is dense in T.

Define ξi(a
j
n(i)) = aj

n for each i, j, n. For each i this defines a strictly monotone orientation-
preserving map ξi between dense subsets of the circle T, which can therefore be extended to

a homeomorphism of T. For fixed i > 0, it follows from the relations Tia
jk+ℓ
n+1 (i) = aℓ

n(i) and



Tajk+ℓ
n+1 = aℓ

n that ξi ◦ Ti = T ◦ ξi on the dense set ∪n>0An(i), and hence on the whole of T

by continuity.
We now show that ξi → idT and ξ−1

i → idT. Given ε > 0, choose N > 0 large enough

that γ−N < ε, and choose M large enough that supj |a
j
N (i) − aj

N | < ε whenever i > M . If

i > M and x ∈ [aj
N (i), aj+1

N (i)], then ξi(x) ∈ [aj
N , a

j+1
N ] and

|ξi(x) − x| ≤ |ξi(x) − ξi(a
j
N (i))| + |ξi(a

j
N (i)) − aj

N (i)| + |aj
N (i) − x|

≤ |aj
N − aj+1

N | + |aj
N − aj

N (i)| + |aj
N (i) − aj+1

N (i)| < 3ε.

Similarly if x ∈ [aj
N , a

j+1
N ], then ξ−1

i (x) ∈ [aj
N (i), aj+1

N (i)] and one may show that |ξ−1
i (x)−x| <

3ε by the same method. �

Lemma 3. If Ti, T ∈ E1 such that infi infx T
′
i (x) > 1 and d0(Ti, T ) → 0 as i→ ∞, then

(a) Every µ ∈ M(T ) is the weak-∗ limit of a sequence {µi} of Ti-invariant measures.
(b) If mi ∈ M(Ti) then any weak-∗ accumulation point of the sequence {mi} belongs to
M(T ).

Proof. For each i let ξi : T → T be the homeomorphism given by Lemma 2.
(a) Each µi := µ◦ξ−1

i is Ti-invariant, and {µi} is weak-∗ convergent to µ, since if f : T → R

is Lipschitz (such functions are dense in C(T)) then |
∫

f dµi −
∫

f dµ| = |
∫

(f ◦ ξi − f) dµ| ≤
‖f ◦ ξi − f‖∞ ≤ lip(f)d0(ξi, id) → 0.

(b) Without loss of generality, suppose that {mi} is weak-∗ convergent. Each νi := mi ◦ξi
is T -invariant, and if f is Lipschitz then |

∫

f dνi −
∫

f dmi| = |
∫

f ◦ ξ−1
i dmi −

∫

f dmi| ≤

lip(f)d0(ξ
−1
i , id) → 0, so the sequences {mi} and {νi} are weak-∗ convergent, with the same

limit. The limit of {νi} is T -invariant since M(T ) is weak-∗ closed. �

For T ∈ E1, its topological entropy htop(T ) is equal to the logarithm of the modulus of
the degree of T . For µ ∈ M(T ), let h(µ;T ) denote the entropy of µ with respect to T .

Lemma 4. Let Ti, T ∈ E1 and suppose that infi infx T
′
i (x) > 1 and d0(Ti, T ) → 0 as

i→ ∞. If µi ∈ M(Ti) for each i, and µi → µ ∈ M(T ), then

lim sup
i→∞

h(µi;Ti) ≤ h(µ;T ).

Proof. By Lemma 2 there exists a sequence of homeomorphisms ξi : T → T such that
Ti ◦ ξi = ξi ◦ T for i sufficiently large, and such that d0(idT, ξ

−1
i ) → 0. It follows that

µi ◦ ξi ∈ M(T ) and h(µi;Ti) = h(µi ◦ ξi;T ), and that limi µi = limi µi ◦ ξi = µ. By the upper
semi-continuity of the entropy map m 7→ h(m;T ) (see e.g. [New]), it follows that

lim sup
i→∞

h(µi;Ti) = lim sup
i→∞

h(µi ◦ ξi;T ) ≤ h(µ;T ).

�

Lemma 5. Suppose Ti → T in E1. If m is any weak-∗ accumulation point of a sequence
mi ∈ L

+(Ti), then m ∈ L
+(T ).

Proof. Without loss of generality, suppose that mi → m. By Lemma 3 (b), m ∈ M(T ).
If µ ∈ M(T ) is arbitrary, then by Lemma 3 (a) there exists a sequence µi ∈ M(Ti) such that
µi → µ. Therefore, writing f = log |T ′| and fi = log |T ′

i |,
∫

f dm−

∫

f dµ =

(
∫

f dm−

∫

f dmi

)

+

(
∫

f dmi −

∫

fi dmi

)

+

(
∫

fi dmi −

∫

fi dµi

)

+

(
∫

fi dµi −

∫

f dµi

)

+

(
∫

f dµi −

∫

f dµ

)

.



The term
∫

fi dmi −
∫

fi dµi is non-negative since mi is Lyapunov maximizing for Ti, while
the other four terms on the right-hand side of the above equation tend to zero as i → ∞.
Letting i→ ∞ gives

∫

f dm ≥
∫

f dµ as required. �

Lemma 6. Let U be an open sub-interval of T, and suppose c ∈ U . For any A,B, ε > 0
there exists a C∞ function ∆ε : T → R such that

∆ε ≡ 0 on T \ U , (1)

∆ε(c) = 0 , (2)

max
x∈T

|∆ε(x)| ≤ B , (3)

max
x∈T

∆′
ε(x) = ∆′

ε(c) = (eε − 1)A , (4)

min
x∈T

∆′
ε(x) > −B . (5)

Proof. Without loss of generality suppose that c = 0, and that (−b, b) is a ball of radius
b contained in U . Define ∆ε ≡ 0 on T \ (−b, b) ⊃ T \ U , so (1) holds.

Define the C∞ function h : R → R by

h(x) =

{

exp(−1/x) if x > 0

0 if x ≤ 0 .

Define ∆ε on (−b, b) by
∆ε(x) = B h(x+ b)h(b − x) gε(x) ,

where
gε(x) = tanh(bεx) ,

and

bε =
(eε − 1)A

Bh(b)2
.

Clearly the function ∆ε is C∞, and ∆ε(0) = 0, so (2) is satisfied.
If x ∈ (−b, b) then max(x + b, b − x) < 1 since necessarily b < 1/2. It follows that

max(h(x + b), h(b − x)) < e−1, and in particular h(x+ b)h(b− x) < 1. Moreover |gε| < 1, so
|∆ε| < B on (−b, b), and since ∆ε is identically zero on T \ (−b, b) then (3) holds.

Now

∆′
ε(x) =

(eε − 1)A

h(b)2
tanh′(bεx)h(x + b)h(b− x)

+Bgε(x)
[

h′(x+ b)h(b− x) − h(x+ b)h′(b− x)
]

, (6)

and since gε(0) = 0 then maxx∈T ∆′
ε(x) = ∆′

ε(0) = (eε − 1)A, so (4) holds.
It remains to verify (5). Suppose x ∈ (−b, 0), so that gε(x) < 0, and since h, h′ and g′ε

are all positive on (−b, b), from (6) we see that

∆′
ε(x) > Bgε(x)h

′(x+ b)h(b − x) . (7)

Now 0 < b − x < 1, so h(b − x) < e−1 < 1. Since 0 < x + b < 1, a short calculation shows
that h′(x+ b) < e−1 < 1. Moreover gε(x) > −1, so (7) implies

∆′
ε(x) > −B . (8)

An analogous calculation establishes (8) for x ∈ (0, b), so (5) is proved. �

Lemma 7. Let T ∈ E1, with z0 a point of least period p under T . If κ > 0 and 0 < ε < 1
then for every sufficiently small δ > 0 there exists Tδ ∈ E1 such that if

gδ(x) := ε−1 log

(

T ′
δ(x)

T ′(x)

)

then:



(i) T jz0 = T j
δ z0 for 0 ≤ j ≤ p− 1

(ii) d1(T, Tδ) ≤ CT ε
(iii) d0(T, Tδ) ≤ δ
(iv) supx gδ(x) ≤ 1 + κ

8

(v) gδ(T
j
δ z0) = 1 for 0 ≤ j ≤ p− 1

(vi) gδ(x) = 0 whenever min0≤j<p d(x, T
j
δ z0) > δ

(vii) infx T
′
δ(x) ≥ γ > 1.

Here γ > 1 and CT > 0 are constants depending only on T .

Proof. For j = 0, . . . , p− 1, let U j
δ be the open interval centred at T jz0 with radius δ,

where δ < ε < 1 is chosen sufficiently small that U j
δ ∩ Uk

δ = ∅ when j 6= k.

For every 0 ≤ j < p, let ∆j
ε,δ be the C∞ function given by Lemma 6, with A = T ′(T jz0),

c = T jz0, U = U j
δ and B = δ. Define

Tδ = T +

p−1
∑

j=0

∆j
ε,δ,

and note using (2) that Tδ(T
jz0) = T (T jz0) for all 0 ≤ j ≤ p−1 so that (i) is satisfied. Since

Tδ ≡ T on T \
⋃p−1

j=0 U
j
δ by (1), (vi) is satisfied also.

Using the pairwise disjointness of the intervals U j
δ together with (3), (4) and (5) it follows

easily that

d0(Tδ , T ) ≤ δ < ε,

∥

∥T ′
δ − T ′

∥

∥

∞
≤ (eε − 1) ‖T ′‖∞ ≤ 3ε‖T ′‖∞

using that δ < ε < 1, so properties (ii) and (iii) follow.
Using (4) and (i), for each 0 ≤ j ≤ p− 1 we have

εgδ(T
j
δ z0) = log

(

1 +
(∆j

ε,δ)
′(T jz0)

T ′(T jz0)

)

= log

(

1 +
(eε − 1)T ′(T jz0)

T ′(T jz0)

)

= ε,

which gives (v). If δ is chosen small enough such that if 0 ≤ j ≤ p − 1 then T ′(x) >

(1 + εκ
8 )−1T ′(T jz0) whenever x ∈ U j

δ , then for each such x, using (4), we have

εgδ(x) = log

(

1 +
(∆j

ε,δ)
′(x)

T ′(x)

)

< log

(

1 +
(

1 +
εκ

8

) (∆j
ε,δ)

′(T jz0)

T ′(T jz0)

)

= log
(

1 +
(

1 +
εκ

8

)

(eε − 1)
)

< ε+ log
(

1 +
εκ

8

)

< ε
(

1 +
κ

8

)

,

which together with (vi) yields (iv). Lastly, if we define γ̃ = infx T
′(x) > 1, then T ′

δ(x) ≥ γ̃−δ
for all x ∈ T by (5), and so it follows that infx T

′
δ(x) ≥ (1 + γ̃)/2 > 1 for all sufficiently small

δ, which is (vii). This clearly also implies that Tδ ∈ E1 as required.
�



3. Generic uniqueness and zero entropy

Let M be the set of all Borel probability measures on T. Throughout this section, fix a
metric ̺ on M which generates the weak-∗ topology, and satisfies the property

̺((1 − β)µ+ βν, µ) ≤ β (9)

for every µ, ν ∈ M and β ∈ [0, 1]. For example if the sequence fk ∈ C(T) \ {0} is dense in
C(T), then

̺(µ1, µ2) =

∞
∑

k=1

∣

∣

∫

fk dµ1 −
∫

fk dµ2

∣

∣

2k+1‖fk‖∞

is such a metric.
For each κ > 0, define

Rκ =

{

T ∈ E1 : diam̺L
+(T ) < κ and

supµ∈L+(T ) h(µ;T )

htop(T )
< κ

}

.

We will show that the set
⋂∞

n=1 R1/n is residual in E1, thereby proving the entropy and
uniqueness statements of Theorem 2. To establish this, it suffices to prove Lemma 8 and
Proposition 1 below.

Lemma 8. For each κ > 0 the set Rκ is open in E1.

Proof. Let T ∈ Rκ, and suppose that Tn → T in E1. We then have htop(Tn) = htop(T )
for all large enough n. By Lemma 5, if µ1

n, µ
2
n are convergent sequences of measures such

that µi
n ∈ L

+(Tn) for each n, then limn µ
1
n, limn µ

2
n ∈ L

+(T ) and hence ̺(µ1
n, µ

2
n) < κ for all

sufficiently large n. It follows that diam̺L
+(Tn) < κ for all large enough n.

Using the compactness of L
+(Tn) and the upper semi-continuity of the entropy map

m 7→ h(m;Tn), we can for each n choose µn ∈ L
+(Tn) such that

h(µn;Tn) = sup
ν∈L+(Tn)

h(ν;Tn).

If µ is any weak-∗ accumulation point of the measures µn, then µ ∈ L
+(T ) by Lemma 5,

hence h(µ;T ) < κhtop(T ), since T ∈ Rκ. Lemma 4 then implies that

lim sup
n→∞

sup
ν∈L+(Tn)

h(ν;Tn) ≤ h(µ;T ) < κhtop(T ) ,

and we conclude that Tn ∈ Rκ for all sufficiently large n. �

Proposition 1. For each κ > 0, the set Rκ is dense in E1.

Proof. Let T ∈ E1 and κ > 0, 0 < ε < 1. We will construct Tδ ∈ E1 such that
d1(T, Tδ) ≤ CT ε and Tδ ∈ Rκ; the map Tδ will be as in Lemma 7 for some sufficiently small
δ > 0.

Recall that measures supported on periodic orbits are dense in MT (see [Sig]). We may
therefore choose a periodic point z0, of least period p, say, with orbit O := {T j(z0) : 0 ≤ j ≤
p− 1}, such that

1

p

p−1
∑

j=0

log T ′(T jz0) > λ+(T ) −
κε

8
.

Define

µ =
1

p

p−1
∑

j=0

δT jz0
,



and note that µ ∈ M(T ) ∩ M(Tδ) for all δ > 0 as a consequence of Lemma 7(i). Using
Lemma 7(v), for each δ > 0 we have

λ+(Tδ) ≥

∫

log T ′
δ dµ =

∫

log T ′ dµ+ ε

∫

gδ dµ > λ+(T ) + ε
(

1 −
κ

8

)

. (10)

We claim that if (δk)k≥1 is a strictly decreasing sequence of positive reals, and ν is a weak-∗

limit of a sequence (νk)k≥1 such that each νk ∈ L
+(Tδk

), then ̺(ν, µ) < κ/2 and h(ν;T ) < κ.
Note that by Lemma 7(vii), infk infx T

′
δk

(x) > 1 and so Lemmas 3 and 4 may be applied in
the limit k → ∞.

Observe now that ν ∈ M(T ) as a consequence of Lemma 7(iii) and Lemma 3. For each
k > 0,

λ+(Tδk
) =

∫

log T ′
δk
dνk =

∫

log T ′dνk + ε

∫

gδk
dνk .

Evidently,

lim
k→∞

∫

log T ′ dνk =

∫

log T ′ dν ≤ λ+(T ),

and so for all sufficiently large k,

ε

∫

gδk
dνk ≥ λ+(Tδk

) − λ+(T ) −
εκ

8
.

It follows from this and (10) that for large enough k,

ε

∫

gδk
dνk ≥ ε

(

1 −
κ

4

)

. (11)

For each k > 0, let Uk denote the open δk-neighbourhood of O. Using Lemma 7(iv) and (vi)
together with (11), it follows that

νk (Uk) ≥
(

1 +
κ

8

)−1
∫

Uk

gδk
dνk =

(

1 +
κ

8

)−1
∫

gδk
dνk

>
(

1 −
κ

4

)(

1 −
κ

8

)

> 1 −
3

8
κ

for all large enough k. Since the sequence (δk)k≥1 is strictly decreasing, Uk+1 ⊂ Uk for every
k. It follows that for every sufficiently large integer ℓ, and k > ℓ,

νk

(

Uℓ

)

≥ νk

(

Uk

)

≥ νk(Uk) ≥ 1 −
3

8
κ.

Letting k → ∞ then yields

ν
(

Uℓ

)

≥ lim sup
k→∞

νk

(

Uℓ

)

≥ 1 −
3

8
κ.

Hence,

ν(O) = ν

(

⋂

ℓ>0

Uℓ

)

≥ 1 −
3

8
κ.

Since O is a uniquely ergodic set and ν ∈ M(T ), the ergodic decomposition theorem implies
that ν = (1 − 3

8κ)µ+ 3
8κµ̂ for some µ̂ ∈ M(T ). In particular it follows using (9) that

lim
k→∞

̺(νk, µ) = ̺(ν, µ) ≤
3

8
κ (12)

and by virtue of Lemma 4,
lim sup

k→∞

h(νk;Tδk
) ≤ h(ν;T ) .

Now µ is a periodic orbit measure, so h(µ;T ) = 0, and therefore

h(ν;T ) =

(

1 −
3

8
κ

)

h(µ;T ) +
3

8
h(µ̂;T ) =

3

8
κh(µ̂;T ) ≤

3

8
κhtop(T ) , (13)



by the variational principle.
So we have shown that (12) and (13) hold whenever ν is a weak-∗ accumulation point as

δ → 0 of the sets L
+(Tδ). Consequently, for all sufficiently small δ > 0,

diam̺L
+(Tδ) < κ ,

and
sup

m∈L+(Tδ)

h(m;Tδ) < κhtop(T ) = κhtop(Tδ) .

In other words, Tδ ∈ Rκ. Since d1(T, Tδ) ≤ CT ε for every δ > 0, this completes the proof. �

4. Generic full support

To establish the fully supported part of Theorem 2 we now prove the following:

Proposition 2. {T ∈ E1 : supp(µ) = T for all µ ∈ L
+(T )} is residual in E1.

Proof. For any proper closed subset Y of T, define

M1(Y ) :=
{

T ∈ E1 : some µ ∈ L
+(T ) has supp(µ) ⊆ Y

}

.

We claim that each such M1(Y ) is a closed subset of E1 with empty interior. Once the
claim is established, it will imply the proposition, since if {Yi} is an enumeration of those
proper closed subintervals of T with rational endpoints, then ∩iM

1(Yi)
c is equal to the set

{T ∈ E1 : supp(µ) = T for all µ ∈ L
+(T )}.

To prove the claim we first show that M1(Y ) is closed. For this, suppose that Ti → T
in E1, where each Ti ∈ M1(Y ), and let µi ∈ L

+(Ti) be such that supp(µi) ⊆ Y . By Lemma
5, any weak-∗ accumulation point µ of {µi} is Lyapunov maximizing for T . If µin → µ
as n → ∞ then since Y is closed, µ(Y ) ≥ limn→∞ µin(Y ) = 1 (see e.g. [Bil, Thm. 2.1]).
Therefore supp(µ) ⊆ Y , and hence T ∈M1(Y ), so M1(Y ) is indeed closed.

Now we show that M1(Y ) has empty interior in E1. If M1(Y ) is empty then there is

nothing to check, so suppose T ∈M1(Y ). Given 0 < ε < 1, we will construct T̂ ∈ E1 \M1(Y )

such that d1(T, T̂ ) < CT ε, where CT > 0 is as in Lemma 7.
Note that any T -invariant measure carried1 by Y is in fact carried by

⋂∞
i=0 T

−iY . Let
0 < ε < 1 be arbitrary. By Lemma 1 there is a T -periodic orbit {x1, . . . , xp} (i.e. T (xi) = xi+1

for 1 ≤ i ≤ p− 1 and T (xp) = x1) which is disjoint from the T -invariant set
⋂∞

i=0 T
−iY , with

1

p

p
∑

i=1

log T ′(xi) > λ+(T ) − ε . (14)

Choose N > 0 such that the orbit {x1, . . . , xp} is disjoint from the set YN :=
⋂N

i=0 T
−iY , and

for each δ > 0 define

YN,δ :=
⋃

d0(T̂ ,T )≤δ

N
⋂

i=0

T̂−iY ,

where the union is taken over all T̂ ∈ E1 such that d0(T̂ , T ) ≤ δ. Note that ∩δ>0YN,δ = YN .
Now let Tδ ∈ E1 be the map given by Lemma 7, with z0 = x1, κ = 1 and δ > 0 chosen small
enough that

inf
y∈YN,δ

inf
1≤i≤p

d(xi, y) > δ. (15)

By Lemma 7(i), {x1, . . . , xp} is a periodic orbit for Tδ as well as for T , and Lemma 7(iii),(vi)
together with (15) ensures that Tδ ≡ T on YN,δ. It follows that any µ ∈ M(Tδ) which is

carried by Y must be carried by
⋂N

i=0 T
−i
δ Y , and hence by YN,δ. Moreover, a probability

measure carried by YN,δ is T -invariant if and only if it is Tδ-invariant.

1We say a probability measure is carried by a set whenever its support is contained in that set.



We now claim that any Tδ-invariant probability measure carried by Y cannot be Lyapunov
maximizing for Tδ, thus Tδ /∈ M1(Y ). Indeed if ν ∈ M(Tδ) is carried by Y then it is carried
by YN,δ, hence

∫

log T ′
δ dν =

∫

log T ′ dν + ε

∫

gδ dν =

∫

log T ′ dν ≤ λ+(T ) , (16)

since gδ ≡ 0 on supp(ν) ⊆ YN,δ, and because ν is also T -invariant.
The inequality (14), together with Lemma 7(v), gives

λ+(T ) <
1

p

p
∑

i=1

log T ′(xi) + ε =
1

p

p
∑

i=1

log T ′
δ(xi) ,

so combining with (16) yields

∫

log T ′
δ dν ≤ λ+(T ) <

1

p

p
∑

i=1

log T ′
δ(xi) ,

and since {x1, . . . , xp} is Tδ-periodic we see that ν is not Lyapunov maximizing for Tδ. By
Lemma 7(ii) we have d1(Tδ , T ) ≤ CT ε; since ε was chosen arbitrarily in (0, 1), it follows that
M1(Y ) has empty interior in E1. �

Remark 1. The proof of Proposition 2 resembles the proof that, for a fixed expanding
map T , a generic function f ∈ C(T) has all its maximizing measures of full support (see [BJ]);
by a maximizing measure we mean an m ∈ M(T ) such that

∫

f dm = supµ∈M(T )

∫

f dµ.

5. Generic properties in higher differentiability classes

For completeness we now include the short proof of Theorem 1, concerning Lyapunov
maximizing measures for generic members of Er, r ≥ 2.

Proof of Theorem 1. If T ∈ Er then log |T ′| is Hölder, so by [CLT, Thm. 4] there
exists ϕ ∈ C(T) such that log |T ′| + ϕ− ϕ ◦ T ≤ λ+(T ), therefore the Lyapunov maximizing
measures for T are precisely those whose support lies in the set Z = {x ∈ T : (log |T ′| + ϕ−
ϕ ◦ T )(x) = λ+(T )}. Thus T has a fully supported Lyapunov maximizing measure if and
only if Z = T, in which case all the T -invariant measures have identical Lyapunov exponent
λ+(T ) (necessarily equal to log k where T has degree ±k).

The set Fr of those T ∈ Er for which all invariant measures have identical Lyapunov
exponent is easily shown to be closed in Er, using Lemma 5. It also has empty interior: any
T ∈ Fr can be Er-perturbed to a map where the Lyapunov exponent of some fixed point
measure differs from that of some period-2 orbit measure, say. �

Remark 2.
(a) In fact Theorem 1 is also true, with an almost identical proof, if Er is replaced by Er,α,
consisting of those T ∈ Er whose r-th derivative is α-Hölder, for r ≥ 1, α ∈ (0, 1].
(b) Contreras, Lopes & Thieullen [CLT, Thm. 2] have proved a related result, in the spirit of
Conjecture 1, concerning the subspace E1,α+ := ∪β>αE

1,β of E1,α: the set of those T ∈ E1,α+

with a unique Lyapunov maximizing measure, supported on a periodic orbit, is open and
dense in E1,α+ (with respect to the topology of E1,α).
(c) By analogy with Conjecture 1, it seems likely that for all r ≥ 1, α ∈ (0, 1], a generic
T ∈ Er,α has a unique Lyapunov maximizing measure, supported on a periodic orbit.

6. Acknowledgments

The first author was supported by an EPSRC Advanced Research Fellowship. The second
author would like to thank M. Nicol for helpful conversations pertaining to this article.



References

[Bil] P. Billingsley, Convergence of probability measures (second edition), Wiley, 1999.
[BJ] T. Bousch & O. Jenkinson, Cohomology classes of dynamically non-negative C

k functions, Invent.
Math., 148 (2002), 207–217.

[CLT] G. Contreras, A. Lopes, & Ph. Thieullen, Lyapunov minimizing measures for expanding maps of the
circle, Ergod. Th. & Dyn. Sys., 21 (2001), 1379–1409.

[KH] A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems. Ency. of Math.
and its App., vol. 54, Cambridge U. Press, Cambridge, U.K. (1995).

[New] S. Newhouse, Continuity properties of entropy, Ann. of Math., 129 (1989), 215–235.
[Sig] K. Sigmund, Generic properties of invariant measures for Axiom A diffeomorphisms, Invent. Math.,

11 (1970), 99–109.

Oliver Jenkinson; School of Mathematical Sciences, Queen Mary, University of London,

Mile End Road, London E1 4NS, UK.

omj@maths.qmul.ac.uk, http://www.maths.qmul.ac.uk/∼omj

Ian D. Morris; School of Mathematics, Sackville Street, University of Manchester, Manch-

ester M60 1QD, UK.

imorris@maths.manchester.ac.uk, http://www.maths.manchester.ac.uk/∼imorris


