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ABSTRACT. Let 0: ¥4 — Y 4 be a subshift of finite type, let M, be the set
of all o-invariant Borel probability measures on X4, and let f: ¥4 — R be a
Holder continuous observable. There exists at least one o-invariant measure
p which maximises [ fdu. The following question was asked by B.R. Hunt,
E. Ott and G. Yuan: how quickly can the maximum of the integrals [ fdu be
approximated by averages along periodic orbits of period less than p? We give
an example of a Holder observable f for which this rate of approximation is
slower than stretched-exponential in p.

AMS subject classification: 37B10, 37D20, 49J30.

1. INTRODUCTION

Let 0: ¥4 — ¥ 4 be a subshift of finite type, let M, be the set of all g-invariant
Borel probability measures on ¥4, and let f: ¥4 — R be Hélder continuous. There
is at least one invariant measure p € M, , which we term a mazimising measure
for f, such that

[ tan=50)= swp [ sav
vEM,
In this paper we investigate the problem of finding invariant measures supported
on periodic orbits which approximately realise this maximum. More specifically, if
we let M, , be the the set of all ergodic o-invariant measures supported on points
fixed by oP, we investigate the quantity

E¢(p) = sup /fdz/ — sup /fdl/,
vEM, vEM, (p)
introduced by G. Yuan and B.R. Hunt [11], being the difference between the max-
imum integral 8(f) of f and the ‘best approximating’ periodic orbit whose period
divides p.

Our motivation is twofold. Firstly, the above problem is of interest in control
theory: if we are able to control the dynamical system o: X4 — X4, we will wish
to direct the trajectories of points in X 4 toward particular unstable orbits which
optimise some given quantity. For reasons of computational simplicity, it is desirable
that such orbits should be periodic and have small length. This leads us to ask how
close to optimal orbits of a specified period may be. These considerations motivate
the work of G. Yuan, B. R. Hunt and E. Ott [7, 11].

Secondly, the quantity 3(f) has shown itself to be of interest in a number of situ-
ations in ergodic theory, both intrinsically [1, 2, 6, 8] and in application to existing
problems [3, 4, 9]. It is therefore of interest to be able to compute this quantity
accurately in numerical experiments. One obvious approach to this task would be
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to exhaustively compute ergodic averages of f along periodic orbits of length up
to m, and take the supremum of these averages as an approximation to S(f). The
error incurred in this approximation would therefore equal infi<,<, Ep(f).

It is classical [10] that Up2; M, ;, is dense in M, in the weak-* topology, and so
E¢(p) — 0 as p — oo for all continuous f. We wish to investigate the rate at which
this convergence occurs when f is Holder.

The behaviour of Ef(p) as p — oo is at present poorly understood. On the
strength of numerical experiments [7] combined with rigorous analysis, Yuan and
Hunt [11] observed that the sequence Ef(p) often decays to zero at an exponential
rate, but were unable to prove this in generality. They then asked whether it could
be shown that Ef(p) always decays exponentially.

The purpose of this paper is to answer this question in the negative. We have

Theorem 1. Let 0: X4 — Y4 be a subshift of finite type. There exists Holder
continuous f: ¥4 — R such that Es(p) tends to 0 at a slower than stretched-
exponential rate: log E¢(p) = o(p®) for every e > 0.

We note that a result similar to Theorem 1 has recently been proved by X.
Bressaud and A. Quas in [5], in which the quantity inf,<,<n, E,(f) is considered.
Bressaud and Quas are able to obtain upper and lower bounds which are superior
to those in the present article, but with the weakness that their lower bound applies
only along subsequences of integers n.

2. NOTATION AND DEFINITIONS

Let A be an irreducible aperiodic N x N matrix of zeroes and ones. We define
the shift space associated to A to be the set

Ya:={z=(2i)i>1:2; €{1,...,N} and A(z;,z;41) = 1 for all i > 1},
and define the shift map 0: X4 — X4 by
(U:L‘)i = Tji+1

for all i > 1. Given 6 € (0,1) we define the §-metric dy on X 4 by

dg ((,f,gi)z.21 ,(yi)m) _ ginf{n>1: vuya}

We say that a function f: ¥4 — R is 8-Hélder continuous if it is Lipschitz con-
tinuous with respect to the metric dp. We fix § € (0,1) for the remainder of this
paper.

We define a finite word to be a finite sequence w = (w;)i, taking values in
the set {1,2,...,N}. We say that w = (w;), is compatible with the matriz A if
A(wi,wir1) =1 for all i < n. We define the length of the word (w)?, to be n. We
will on occasion describe elements of X 4 as infinite words. We say that finite words
w!, w? of equal length n are rotation equivalent if there exists a nonnegative integer
r < n such that w} = w? . whenever 1 <4 < n —r and w} = w2 ,_, whenever
n—r <i<n. When w' and w? are rotation equivalent we write w' ~ w?. Words
of distinct lengths are never rotation equivalent.

Given two words w',w? with lengths n; and na, we define their concatenation
w!-w? to be the word of length n; +ns given by [w!-w?]; = w! when 1 < i < ny, and

[w!-w?]; = w? when ny +1 < i < nq+ns. Given a finite list of words w?, ..., w™, we

denote the compound concatenation w!-w?-...-w™ by [[j-, w*. Concatenation is
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associative. If w!,w? are finite words with lengths n;,n, compatible with A, their
concatenation is compatible with A if and only if A(w} ,wi) = 1.

For each p > 0 we let (2, be the set of all words of length p which are compatible
with A. We let Q, be the set of all words w € Q,, such that A(wp,w:1) = 1. Note
that w € €, if and only if both w € Q, and w - w € Q.

If x € ¥4 it is clear that that oPx = z if and only if 2; = 244, for all 4 > 1,
if and only if there exists w € ﬁp such that z;14p = w; for all 1 <4 < p and
k > 0. In this case we write z = m(w). This defines a relationship between the
sets Fix, = {x € ¥4: 0Pz = z} and 0, which may readily be seen to be bijective.
Moreover, we have 7(w!) = o?m(w?) for some j > 0 if and only if w! ~ w?.

If a = (a;)P, is a finite word and b is either a finite word or an element of X 4,
we write a < b if there is £ > 0 such that a; = b;y for all 1 < i < n. In this case
we say that a is a subword of b.

3. PROOF OF THEOREM 1

We begin with the following:

Proposition 3.1. Let K = oK be a closed nonempty subset of X4 and define
fx(z) = —dg(K,z) for all x € £ 4. Clearly fx is 6-Holder continuous. For each
w € ), we define

{(w,K) := inf {{>0:3 a€Q such thata <w' andV z € K, a £ z}.

w' MW

Let p > 0, and suppose that sup,cq, &(w,K) < p. Then

1 1
> - Sup,, cn &(va) — _ 3 E(w,K)_
By () 2 Lo o nt 6

Proof. Let p > 0 and w € Q,, where &(w, K) < p. We have

logs sup d(r(), K) = logy sup inf dy(x(s),)
= inf supinf{l>0:z; # 7(w')e}

W N e K

= inf sup{{>0: Iz € Kst. z;=m(w); V1<i<{}

= inf {£{>0:Ja€Qst a;=m(w);V1<i<landVze€K,aAfz}
w W

=inf {{>0:Ja€Qst.a<n(w)andaAzVzeK}

w!~w

= inf {({>0:Fa€Qst.a<w andafzVzreK}

w!~w

={(w,K),

where we have used £(w, K) < p in the second-from-last equality. Since K is closed,
o-invariant and nonempty, the Krylov-Bogolioubov Theorem shows that there exists
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1 € M, such that p(K) = 1. It follows that 3(f) =0, and so

1 .
> — inf sup d(o’z,K)
p oPr=x 0§j<p

1
= — inf sup d(r(w'), K)

D we, wow

>1 inf g5w.K)
T P weE

)
as required. a
It follows that to prove Theorem 1, it suffices to construct a nonempty compact
set K = 0K C X4 such that sup,cq, &(w,K) = o(p®) as p — oco. The remainder
of this section is dedicated to this task. We will construct the invariant set K
recursively, using a sequence of sets of words M,, of increasing length. The set K
will then arise as a limit of these sets.
Let M; be a subset of €y, for some positive integer ¢; such that m; = Card M;
is divisible by 2'®. We require that M; have the following properties:

Definition 3.2. There ezists an integer P > 1 and word z = (2;)E., € Qp such
that:
(i) Every w € M, satisfies z; = w; for all 1 <i < P.
(i) If w = w' - w? where w',w? € My, and 2; = wit, for all 1 <i < P, then
either r = €1 orr = 0.
(i) A(wy,,w?) =1 for all w',w? € My; that is, w' - w?> € Qo for every
pair w',w? € M;.

The reader may verify that such a set M; may be constructed for any prescribed
my and matrix A.

We will define a sequence of sets M,, with cardinalities m,, consisting of words
of length /,, in an inductive fashion starting with the set }/;. We begin by defining
some integer sequences which will be crucial to our construction.

Definition 3.3. Given an integer m; divisible by 2'%, let ¢ = t; = my /4. Define
sequences (Mp)n>1, (qn)n>1 and (tp)n>1 as follows. Given the integer t,, we let
Mpy1 = 4 and qpy1 = imn_H = 4t~1 and let 1,41 be the unique positive real

number such that

VTn+l _ atp—1 __
Topr =4 = qn+1-

We then define
-
tnyr = 4LVTE
The key properties of these sequences are stated in the lemma below.

Lemma 3.4. For eachn > 1, we have t,, | ¢, m,/q, = 4 and t, > 2'*. Moreover,
the sequence t,, satisfies tn/\/tnt1 < 16t}/4 for allm > 1 and

. tn
lim
n—00 tn+1

=0.
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Proof. The first two statements are clear. We consider the sequence (t,)n>1; the
definition implies that

tp—1 tn tn

1 -2 W=l -
T =4V §4l s =tnpr SAVTEL D ST,

for every n > 1. We proceed inductively. Given that ¢, > 2'4, we notice that

VTrr1108 Tyt = (tn — 1) log4.
We thus have
tn = VTnt1108y Tng1 + 1> /Tnyr,
and therefore
logy Trt1 < 2logy tn.-
We deduce
tn,—1 t,—1

1 1
tagl > —/Tny1 = > > —¢43/4 _ 2
= VI T log, Tars © 8logyte — 8" 8

where we have used the elementary inequality log, t < t'/4 for all ¢+ > 16. Thus

1 2
s > g (t?/“ - 1) > 9=6 (221 ooy 1) > ol
for every n > 1, making it clear that ¢, /v/Tht1 < 16t§/ *. One may easily use the
above to show that t, 11 > t, + 61—4 for each n > 2, implying that t,, — oo; since for
each n we have

o<t < 4t, _
tnir — 32 93/t 11
it follows that lim, o t5/tnt1 = 0 as required. O

For an integer n > 1, a finite word a = (a;); and a finite or infinite word b,
we shall write a <, b if there is £ > 0 such that a; = biyre, for all 1 < i < m.
The distinction between < and <,, will be important since we will construct words
w € M,4+1 as concatenations of words a,b,¢,... € M,. For example, if a,b,c € M,,
then it is true that b-¢ <, a-b-c-a and ¢-b £, a-b-c-a; however, the statement
c-b=<a-b-c-a could be either true or false, depending on the subword structure
of the words a, b and c.

Given n > 1 and the set M,,, we construct the set M,,; as follows. Recalling that
my,, = 4qy, partition M, into g, disjoint sets C* of cardinality 4, where 1 < k < gj,.
For each k, we will write CF = {¢¥: 1 < j < 4}. Define

Iy = {(i1,i2, ... ig,) € {1,2,3,4} : ipy = ipypy, for all 1 <m < g, — tn}.

For each g,-tuple (i1,...,4,) € I, we construct the word

qn
Wit omign) = | ] hi-
k=1
We let My = {wiy,....i,) ¢ (01, ++51g,) € In}. Clearly,

Card M4, = Card I, = 4" = my 4y

in accordance with Definition 3.4. We remark that Definition 3.2(iii) implies that
M, C Qq, for every n > 1. The key features of the above construction are sum-
marised in the following lemma.
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Lemma 3.5. The following are direct consequences of the definition of the sets
M,,:

(i) If [Ti~, c§, € My, wheren > 2 and each cf, € Cf_,, then cf, € C}_, if

and only if k = 1.

(1) If wy = ck1 . f; with cfll € Cﬁl,cf; € CF2, then there exists N > n and

wo € My such that wi <, wo if and only if ko =14+ k; mod g,.

(iii) If w1 = H:OZZ" ck where each c& € CF, and ko < gn — tn, and j, #

Jko+tn, then wi £An wa for all we € My, for all N > n+ 1.

(W) If wy <p wo € Myy1, w1 <n w3 € Mpy1 and wy has length at least t,4,,

then wy = ws.

(v) For each n > 1 we have

1
€n+1 = QHEn = Zmnﬁn

and hence
n
en+1 = El H qk-
k=1

The proof is clear. a
The following lemma allows us to pass from the relation < to the relation <,
and thus make use of Lemma 3.5.

Lemma 3.6. Let a = (a;)5", € M, and w = (wi)}X, € My where n < N. Suppose
that there is r > 0 such that a; = wy4; for all 1 <i < {£,. Then £, | r.

Proof. We first prove the case n = 1. Let w =[]}~ w* where each w* € M, and
suppose a; = wpy; for all 1 < ¢ < ¢4, There exists k* such that k*f; < r +i <
(k*+2)¢; for all 1 <4 < £y, so that if we let & = w*™ -wF +1 then 2; = a; = Diyr_pee,
for all 1 < i < P < ¢; by Definition 3.2 (i). By Definition 3.2 (ii) we have either
r—k*y =4y or r — k*¢y =0 and so ¢4 | r as required.

We proceed by induction on n. Let a = Hq" 'a* and w =[]}~ ©* with each
'“, Ok € My,_y. Let a! = (a')!"7'. Since a} = wyy; for all 1 < i < £,_1, we have
Z,_1 | r by the induction hypothesis. Since each &* has length £,,_1, it follows that

there i is 5 = r/ln_1 > 0 such that [[%5' &% = [[}="9"~* O*. By Lemma 3.5(i) w
have a¥ € CL_, if and only if k = 1, and similarly oF € C}L_l if and only if k = 1
mod ¢,,. Since @*t1 € C}_, it follows that s = 0 mod g,. Since r = sf,_; and
Ly, = gn—1£n—1 we deduce that £, | r. O

Henceforth, we shall say that a finite word w is admissible if and only if it occurs
as a subword of some w, € M, for some n (hence for all sufficiently large n). We
deduce:

Corollary 3.7. Let w = (w;)?_; be admissible. Let a,b € My, and write a =
(ai)fgl,b = (bi)fgl. If there are r,s > 0 such that a; = Witr, bi = wits for all
1<i<¥,, thent, | r—s.

We may now prove:

Lemma 3.8. The following constraints on admissibility hold:
(i) If w= cfll - k2 with ck1 € Ck ck2 ¢ Ck2 | then w is admissible if and

J2 n?7j2

only if ko =1+ k; mod qn
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(ii) If w = Hﬁ‘:,;i" ck with each ck € CE, and jr, # jrortn, and ko <

qn — tn, then w is not admissible.
Proof. Apply Lemma 3.5 and Lemma 3.6. |

Lemma 3.9. Let a,b € M, where n > 2, and suppose that the word a - b is
inadmissible. Then a-b has an inadmissible subword of length less than or equal to
2tn—len—l-

Proof. Let a = [[{"7' a*, b = []{"7' b* where each a*,b¥ € M, ;. Define u =
[ 410" and v = [Tin=l b%, each being an admissible word of length
tn—10n_1. Clearly u-v < a-b. Suppose, for a contradiction,that u-v < wy -ws = w,
say, where wy,ws € M, and w is admissible. Let (u-v);, = wiy, for all 1 < i <
2(,_1. By Lemma 3.6, r = £,,_1s for some s. Suppose that s > g,; then v <, wo
and so wy = b by Lemma 3.5(iv). Thus s = ¢, and so u <, w; and w; = a. Thus
w = a-b and so is not admissible. It follows that u - v is inadmissible; this word has
length 2t,, 14,1 as required. O

Lemma 3.10. Let w be a word of length £ > {,, where n > 2. Then either
w =~ [Tpe, wk with each w® € Ck_,, or there ezists w' ~ w which has an inadmissible
subword of length less than or equal to 34,_1.

Proof. Suppose that for all w' ~ w, every subword of w' of length 3¢,,_; is ad-
missible. Let £ = sf,_1 +r with 0 < r < £,_1. We claim that there exist
wk € M, and a word w* of length r such that w ~ [J;_; w* - w*. We will show
that (w,-);lel"‘l ~ [[je, w* for all m < s by induction on m.

Clearly, any admissible word of length 3/,,_; must include some a € M, _; as a
subword, and so w must include such a subword. Taking a rotation equivalent of
w if necessary, we deduce that there exists w! € M,_; such that w; = w} for all
1 <i</¥,_,. This proves the case m = 1.

Given that (w;)/r~" = [[i,w* with each w* € M, i, consider the word
b= (b)) defined by b; = Wi 1)e,_,44 for all 1 < i < 26,_;, which is well-
defined as long as m+1 < s. Since b has length 2/,,_; < 3¢,,_; it is admissible, and
so there exist N, M,t >0 and a = Hkle a* € My with each a* € M,,_1 such that
b = azy; for all 1 <4 < 24, ;. By Lemma 3.6 we have t = £,,_1¢ for some %, so
that b = a’*! - a**2. Thus (w,)z(:;ézl_"lj:l = (bz)fizil 11 = al € M,_; as required
to prove the case m + 1. This completes the induction step and proves our claim.

Since for every w' ~ w, every subword of w' with length less than or equal to
3(,,_1 is admissible, the word 2z = w?® - w* - w! must be admissible. By Corollary 3.7
this implies £,_1 | r and hence = 0. This completes the proof. |

Lemma 3.11. Let w = H;nzl w* for some w', ..., w™ € M, with m > 1. Then at
least one of the following holds:

(a) There exists w' ~ w such that w' has an inadmissible subword with length
less than or equal to 20,_1t,_1, or

(b) there exists w' ~ w such that W' has an inadmissible subword with length
less than or equal to (1 + t,)ly, and m > ¢, or

(c) there exist i > 0 and &',...,0™ € My such that m = £, 1% and
w =~ [T, k.
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Proof. Suppose that the case (a) does not hold. Writing w =[]}, cf with every
cf € C¥i, this assumption implies via Lemma 3.8(i) and Lemma 3.9 that for every
i < m we have k;; =1+ k; mod g,. Clearly, there exists a rotation equivalent of
w which includes the word cf: . cfll Again by Lemma 3.8(i) and Lemma 3.9, our
assumption that case (a) does not hold implies that this word is admissible, and
hence k; = k,, + 1 mod g,. It follows that the sequence k; must take every value
in the range 1,...,q, an equal number of times. Taking a rotation equivalent if

necessary, we have

S gn
=TI 4.
s=1 k=1
for some integer S > 1 and some sequence ji s. Note in particular that m > ¢, (as
required for (b) to hold).

We now suppose also that (b) does not hold. To show that w is a concatenation
of elements of M1 1, and hence that (c) holds, it remains to show that ji. s = ji+t,,s
foralll1 <s< Sand1l<k<gq,—t, Ifthisis not the case, then w must include
a subword of the form

ko+tn

k
H Clm,s
k=ko
for some fixed s such that ji, s # Jjko+t.,s, Which is inadmissible by Lemma 3.8(ii)
and has length (1 + #,,)£,,, implying the case (b). O
Combining the above lemmata, we obtain:

Proposition 3.12. Define a set K C Y4 by letting x € K if and only if every
subword of x is admissible. Then K is closed, satisfies c K = K, and is nonempty.
Moreover,

sup {(w, K) = o(p°),
weQy

for every € > 0.

Proof. That K is a nonempty subset of ¥4 follows from the fact that M, C Q,,
for every n > 1; the proof that K is closed and o K = K is straightforward. Given
w € Qp and £, < p < Lpy1, we will attempt to bound the quantity

&(w,K) = inf {£>0: 3 a € Q such that a < w' and a is not admissible}.
w'™w

Suppose that £(w, K) > 3¢,_1. Then by Lemma 3.10 we have w ~ []i%, cf where

each cf € C* | and m = p/f, 1. Lemma 3.11 then implies that either £(w, K) <

20y, _oty_a,0r E(w,K) <l 1(1+t,_1), 0r w >~ ]—[Zl1 cf: where each cf: € Cki and
m = p/L,. In the last of these three cases, we apply Lemma 3.11 again to see that,
since p < £p41, either &(w, K) < 20, _1t,—1, or p > £pqy, and £(w, K) < lp(1+t,) <

2pty, /qn- We conclude that in any case

2pt
f(w, K) < max {3€n—1; 24y _otn—_2, En_l(tn_l + ].), 20 _1tn—1, Z i }

n
2pt
= max {2€n1tn17 —p n } .
q

n
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Hence for every n > 3 and € > 0,

1 St
sup  sup —&(w, K) <max{ 20, _1t,_1£,°,2———
£y <p<lpi1wEQ, P° an

< 2max {€) Gtn_10n"1, 0n tngy "} = 205 tng, .

To complete the proof, therefore, it suffices to show that t,q, ¢, — 0 for every
€ > 0. Using Lemma 3.5(vii), Lemma 3.4 and Definition 3.3, we have

n—1
tn—1
log, (thEeen) <logy | 4 V7= Tty H qr
k=2

n—2

th—1
<logy(qily) + 2= —etp_1 + tr

n—2
= —¢€tp_1+ Z tr + O (t:/jl) .
k=1

Elementary analysis then shows that since ¢,,_1 /t,, tends to zero, ZZ;; te = o(tn-1)
and so

log, (tnqgsén) — —0
as required. O
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