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1. Introduction and statement of results

Let A be a set of d×d real matrices. The joint spectral radius of A was defined
by G.-C. Rota and W. G. Strang in [19] to be the quantity

%̂(A) := lim
n→∞

sup
{
‖Ain · · ·Ai1‖1/n : Ai ∈ A

}
.

The joint spectral radius has since emerged as a useful tool in a number of research
areas including the theory of control and stability [2, 10, 12], coding theory [15],
wavelet regularity [6, 7, 13], and the study of numerical solutions to ordinary
differential equations [9]. The following characterisation of the joint spectral radius,
which we term the Berger-Wang formula, is due to M. A. Berger and Y. Wang [3],
following a conjecture in [6]:

Theorem 1.1. Let A be a nonempty bounded set of d× d real matrices. Then

%̂(A) = lim sup
n→∞

sup
{
ρ(Ain · · ·Ai1)1/n : Ai ∈ A

}
.

The concept of joint spectral radius generalizes directly to the context of
bounded operators on Banach spaces, where it may be used to establish a number
of results in invariant subspace theory [23, 24, 26]. In this article we use ergodic
theory to prove an analogue of Theorem 1.1 for the case in which A is a set of
bounded linear operators acting on a Banach space X. We also obtain a further
relationship between two other joint spectral radii which may be defined in this
context. In order to state our main results we require the following definitions.

Let X be a Banach space and let BX denote its unit ball. We define the
Hausdorff measure of noncompactness of an operator L ∈ B(X), which we denote by
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‖L‖χ, to be the infimum of all positive real numbers ε for which LBX admits a finite
ε-net. We define a second functional on B(X) by ‖L‖f := inf{‖L−K‖ : rankK <
∞}. Some useful properties of these two quantities are described in the following
proposition.

Proposition 1.2. Let X be a Banach space. Then the functions ‖ · ‖χ, ‖ ·
‖f : B(X) → R are seminorms and are Lipschitz continuous. For every L ∈ B(X)
we have ‖L‖χ = 0 ⇐⇒ L ∈ K(X) and ‖L‖χ ≤ ‖L‖f ≤ ‖L‖. The seminorms
‖ · ‖χ and ‖ · ‖f are submultiplicative: for every L1, L2 ∈ B(X) we have ‖L1L2‖χ ≤
‖L1‖χ‖L2‖χ and similarly for ‖ · ‖f .

The properties listed above for ‖ · ‖χ are rather standard (see e.g. [17]); the
properties of ‖ · ‖f and the inequality ‖L‖χ ≤ ‖L‖f may easily be deduced by the
reader.

Given a Banach space X and a bounded set A ⊆ B(X), let us define An :=
{Ain · · ·Ai1 : Ai ∈ A} for each n ∈ N. We consider the following four spectral radii:

%̂(A) := lim
n→∞

sup
A∈An

‖A‖1/n, %χ(A) := lim
n→∞

sup
A∈An

‖A‖1/nχ ,

%f (A) := lim
n→∞

sup
A∈An

‖A‖1/nf , %r(A) := lim sup
n→∞

sup
A∈An

ρ(A)1/n.

By submultiplicativity it follows that the limit in each of the definitions of %̂, %χ
and %f exists and is also equal to the infimum over n ∈ N of the same quantity.

In this article we establish the following basic relationships between the spectral
radii %̂, %r, %χ and %f :

Theorem 1.3. Let X be a Banach space and let A ⊆ B(X) be precompact and
nonempty. Then

(1) %̂(A) = max{%χ(A), %r(A)}
and

(2) %χ(A) = %f (A).

The equation (1) has been termed the Generalized Berger-Wang formula by
V. S. Shulman and Yu. V. Turovskĭı [24], who gave a proof conditional on various
additional hypotheses. A more general version was established in [25], with an
unconditional proof recently being given in [26]. The relation (2) does not appear
to have been known prior to the present article, although a similar relation is known
in cases where X satisfies a strong version of the compact approximation property
[24, p.419].

As well as strictly generalising Theorem 1.1, Theorem 1.3 yields simple proofs
of several results on invariant subspaces of families of operators. In particular it
may be applied to give a short proof of a celebrated theorem of Turovskĭı [29] which
states that any semigroup of compact quasinilpotent operators acting on a Banach
space has a nontrivial invariant subspace. Proofs via (1) of this and other related
results may be found in [24, 26].

It should be noted that (1) may fail to hold if we assume only that A is bounded,
and also that there exist Banach spaces X and precompact sets A ⊆ B(X) such that
%r(A) < %χ(A). Specifically, in the case where X is a separable infinite-dimensional
Hilbert space, M.-H. Shih et al. give an example in [22] of a closed bounded
noncompact set A ⊆ B(X) which satisfies %χ(A) = %r(A) = 0 and %̂(A) = 1. Also
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in the context of a separable Hilbert space, an example was given by P. Rosenthal
and A. So ltysiak in [18] of a two-element set A ⊆ B(X) such that %r(A) < %̂(A). It
is not clear to the author whether (2) can fail to hold when A is bounded but not
precompact.

We now describe the ergodic-theoretic results which are used to deduce The-
orem 1.3. Let T be a measure-preserving transformation of a probability space
(X,F , µ) and X a Banach space. A linear cocycle over T is a measurable function
A : X × N→ B(X) which satisfies the relation

A(x, n+m) = A(Tmx, n)A(x,m)

for every n,m ∈ N and µ-almost-every x ∈ X. If X is a topological space and F its
Borel σ-algebra we say that A is a continuous linear cocycle if the map x 7→ A(x, k)
is continuous for every k ∈ N. When discussing linear cocycles we shall find it useful
to adopt the conventions log 0 := −∞ and log+(x) := max{0, log x} for x ≥ 0.

Theorem 1.3 is derived from the following technical result:

Theorem 1.4. Let T : X → X be a homeomorphism of a compact metric space,
µ a T -invariant Borel probability measure on X, and X a Banach space. Suppose
that A : X × N → B(X) is a continuous cocycle such that A(x, n) is an injective
operator for every (x, n) ∈ X×N. Then there exists a T -invariant Borel set Λ ⊆ X
satisfying µ(Λ) = 1 with the following properties. If x ∈ Λ then the limits

λ(x) := lim
n→∞

1
n

log ‖A(x, n)‖,

χ(x) := lim
n→∞

1
n

log ‖A(x, n)‖χ

exist,

(3) lim
n→∞

1
n

log ‖A(x, n)‖f = χ(x),

and if additionally χ(x) < λ(x) then

(4) lim sup
n→∞

1
n

log ρ(A(x, n)) = λ(x).

For d ∈ N let Matd(R) denote the vector space of all d× d real matrices. The
ideas used to prove Theorem 1.4 may also be applied to obtain the following result
which answers a question of J. E. Cohen [4, p.329]:

Theorem 1.5. Let T be a measure-preserving transformation of a probability
space (X,F , µ) and let A : X × N → Matd(R) be a measurable linear cocycle such
that

∫
log+ ‖A(x, 1)‖ dµ(x) < ∞. Let Z denote the set of all x ∈ X such that

limn→∞ ‖A(x, n)‖1/n exists. Then

(5) µ

({
x ∈ Z : lim sup

n→∞

1
n

log ρ(A(x, n)) = lim
n→∞

1
n

log ‖A(x, n)‖
})

= 1.

A version of Theorem 1.5 was given by A. Avila and J. Bochi [1] in the case
where T is invertible and A(x, 1) ∈ SL2(R) for every x ∈ X. Avila and Bochi also
give an example to show that limn→∞

1
n log ρ(A(x, n)) can fail to exist µ-a.e. even

when the dependence between A(x, 1) and A(T kx, 1) is very weak.
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2. Proof of Theorems 1.4 and 1.5

The main ingredient of the proof of Theorem 1.4 is a multiplicative ergodic
theorem for Banach spaces which was established by P. Thieullen [28], building on
earlier work of R. Mañé [14] and D. Ruelle [20]. In order to state Thieullen’s result
we require the following definitions.

Given a Banach space X we let G(X) denote the set of all closed subspaces
F ⊆ X for which there exists a closed subspace G ⊆ X such that X = F ⊕ G.
In particular, G(X) contains all finite-dimensional subspaces of X as well as all
closed subspaces of finite codimension. Given any F0 ∈ G(X) and any G ∈ G(X)
such that F0 ⊕ G = X, define UF0,G = {F ∈ G(X) : F ⊕ G = X}. Define a map
ϕF0,G : UF0,G → B(F0, G) by identifying each F ∈ UF0,G with the unique continuous
linear map F0 → G whose graph is F ; that is, ϕF0,G(F ) is the restriction to F0 of
the unique projection X → G having image G and kernel F , this projection being
continuous by the closed graph theorem. We now define a topology on G(X) by
declaring each triple (UF0,G, ϕF0,G,B(F0, G)) to be a chart at F0. The resulting
topology has the property that Fn → F in G(X) if and only if ϕF,G(Fn) → 0 ∈
B(F,G) for every G ∈ G(X) such that F ⊕G = X; see [28, Appendix B].

Given topological spaces Ω1,Ω2 and a Borel measure µ on Ω1, we shall say that
a map f : Ω1 → Ω2 is µ-continuous if there exists a sequence of pairwise disjoint
compact sets Kn ⊆ X such that µ(

⋃
nKn) = 1 and the restriction of f to Kn is

continuous for each n.
We now give a statement of Thieullen’s theorem, restricted to the special case

of a compact metric space X and ergodic measure µ. To simplify the statement let
us write Np := {1, . . . , p} for p ∈ N and N∞ := N.

Theorem 2.1. Let T : X → X be a continuous homeomorphism of a compact
metric space, let µ be an ergodic Borel probability measure on X, let X be a Banach
space, and let A : X×N→ B(X) be a continuous cocycle. Suppose that A(x, n) is an
injective operator for every (x, n) ∈ X ×N. By the subadditive ergodic theorem the
limits χ := lim 1

n log ‖A(x, n)‖χ and λ := lim 1
n log ‖A(x, n)‖ exist and are constant

µ-a.e. Suppose that χ < λ. Then there exists a T -invariant Borel set Λ ⊆ X which
satisifies µ(Λ) = 1 such that the following properties hold.

There exist p ∈ N ∪ {∞}, a sequence of real numbers λ = λ1 > λ2 > . . . > χ
indexed in Np, and two corresponding sequences of Borel-measurable µ-continuous
maps F1, F2, . . . : Λ → G(X), G1, G2, . . . , : Λ → G(X) indexed in Np, such that for
every x ∈ Λ and k ∈ Np, Fk(x) is finite-dimensional and

F1(x)⊕ · · · ⊕ Fk(x)⊕Gk(x) = X,

A(x, n)Fk(x) = Fk(Tnx),

A(x, n)Gk(x) = Gk(Tnx)

for every n ∈ N. For each x ∈ Λ and k ∈ Np we have

lim
n→∞

1
n

log
‖A(x, n)v‖
‖v‖

= λk

uniformly for v ∈ Fk(x) \ {0}. Similarly, if k ∈ N with k < p then for each x ∈ Λ,

(6) lim
n→∞

1
n

log sup
{
‖A(x, n)v‖
‖v‖

: v ∈ Gk(x) \ {0}
}

= λk+1.
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If k = p <∞ then the limit in (6) is instead equal to χ. If p =∞ then limi→∞ λi =
χ.

Remark. The statement of uniform convergence in Theorem 2.1 is not an-
nounced explicitly in the statement of that theorem in Thieullen’s paper. However,
the corresponding statement is proved in [28, p.68-69].

We may now begin the proof of Theorem 1.4. Let X,T,X and A be as in that
theorem. We must show that the set of all x ∈ X such that

lim sup
n→∞

ρ(A(x, n))1/n = lim inf
n→∞

‖A(x, n)‖1/n = lim sup
n→∞

‖A(x, n)‖1/n

and
lim inf
n→∞

‖A(x, n)‖1/nχ = lim sup
n→∞

‖A(x, n)‖1/nf ,

which is clearly Borel, has full measure for every T -invariant measure µ. Using a
suitable ergodic decomposition theorem it suffices to prove that this holds in cases
where µ is ergodic, which assumption we make for the remainder of the section.

We begin by showing that lim 1
n log ‖A(x, n)‖f = lim 1

n log ‖A(x, n)‖χ µ-a.e.
Let λ, χ be as above; if λ = χ then the result follows directly from Proposition 1.2,
so we assume λ > χ. Let Λ ⊆ X, F1, F2, . . . and G1, G2, . . . be as given by Theorem
2.1. Given ε > 0, take k ≥ 1 such that for every x ∈ Λ the limit in (6) is bounded
by χ+ ε. For each x ∈ Λ define F (x) := F1(x)⊕ · · · ⊕ Fk(x) and let P (x) ∈ B(X)
be the unique projection having image F (x) and kernel Gk(x). Note that for each
x ∈ Λ the boundedness of P (x) is guaranteed by the closed graph theorem, and
that the µ-continuity of the maps F1, . . . , Fk, Gk implies the µ-continuity of P .
Now take any x ∈ Λ. Since P (x) has finite rank,

‖A(x, n)‖f ≤ ‖A(x, n)−A(x, n)P (x)‖

≤ (1 + ‖P (x)‖) sup
{
‖A(x, n)v‖
‖v‖

: v ∈ Gk(x) \ {0}
}

so that lim sup 1
n log ‖A(x, n)‖f ≤ χ+ε for each x ∈ Λ. By Proposition 1.2 we have

lim inf 1
n log ‖A(x, n)‖f ≥ χ and the result follows.

We now proceed to the second part of Theorem 1.4. Our approach is suggested
by recent work of B. Kalinin [11]; this line of argument is also applied by the
author in [16]. For each x ∈ Λ we take V (x) = F1(x) and W (x) = G1(x), let
P (x) ∈ B(X) be the unique projection having image V (x) and kernel W (x), and
define Q(x) = I − P (x). Clearly P and Q are well-defined and µ-continuous as
before. Let x ∈ Λ and n ∈ N; if v ∈ V (x) and w ∈W (x) then clearly

P (Tnx)A(x, n)(v + w) = A(x, n)v = A(x, n)P (x)(v + w),

and since V (x) ⊕ W (x) = X it follows that P (Tnx)A(x, n) = A(x, n)P (x) and
Q(Tnx)A(x, n) = A(x, n)Q(x). We require the following lemma:

Lemma 2.2. There exists a set Λ̃ ⊆ Λ with T Λ̃ ⊆ Λ̃ and µ(Λ̃) = 1 such that
for every x ∈ Λ̃,

lim inf
n→∞

‖P (x)− P (Tnx)‖ = 0.

Proof. It suffices to show that for each r > 0, the set

Λr :=
{
x ∈ Λ: lim inf

n→∞
‖P (x)− P (Tnx)‖ ≤ 2/r

}
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has full measure, since we may then define

Λ̃ =
∞⋂
n=0

T−n

( ∞⋂
r=1

Λr

)
and obtain the desired result.

Let Kn be a sequence of compact subsets of X witnessing the µ-continuity of
the map x 7→ P (x). Define

Z =
⋃
n≥1

{P (x) : x ∈ Kn} ⊆ B(X).

Clearly Z is a countable union of compact sets, hence separable, and µ({x ∈
Λ: P (x) ∈ Z}) = 1. Let r > 0. Since Z is separable we may choose a se-
quence (Ln)n≥1 in Z such that {B1/r(Ln) : n ≥ 1} covers Z. For each n > 0 let
Cn,r = {x ∈ Λ: P (x) ∈ B1/r(Ln)}. For each n > 0 the Poincare recurrence theorem
yields

µ({x ∈ Cn,r : T kx ∈ Cn,r for infinitely many k ∈ N}) = µ(Cn,r)

and since µ(
⋃
n≥1 Cn,r) = 1 it follows that µ(Λr) = 1 as required. �

For each δ > 0 and x ∈ Λ define a closed convex cone in X by

K(x, δ) :=
{
u ∈ X : ‖P (x)u‖ ≥ δ−1‖Q(x)u‖

}
.

To prove Theorem 1.4 it suffices to show that each x ∈ Λ̃ has the following two
properties: firstly, for every sufficiently small ε > 0 we have

(7) inf
u∈K(x,1)\{0}

‖A(x, n)u‖
‖u‖

≥ en(λ−3ε)

for all sufficiently large n > 0; and secondly, for infinitely many n > 0 we have
A(x, n)K(x, 1) ⊆ K(x, 1). To see that this implies (4), note that if A(x, n)K(x, 1)
is contained in K(x, 1) and (7) holds, then taking any v ∈ K(x, 1) \ {0} we obtain

1
n

log ρ(A(x, n)) ≥ lim inf
k→∞

1
nk

log
∥∥(A(x, n))kv

∥∥ ≥ λ− 3ε.

Given x ∈ Λ̃ it follows that (4) will be satisfied if the above conditions can be met
for every ε > 0. We therefore fix x ∈ Λ̃ for the remainder of the proof and proceed
to establish these two properties. By Theorem 2.1 we have

lim inf
n→∞

1
n

log inf
{
‖A(x, n)v‖
‖v‖

: v ∈ V (x) \ {0}
}

= λ

and

lim sup
n→∞

1
n

log sup
{
‖A(x, n)v‖
‖v‖

: v ∈W (x) \ {0}
}

= ν

for some ν < λ. Choose any ε > 0 small enough that 3ε < λ−ν. If n is taken large
enough we have for each u ∈ K(x, 1)

‖P (Tnx)A(x, n)u‖ = ‖A(x, n)P (x)u‖ ≥ en(λ−ε)‖P (x)u‖

≥ 1
2
en(λ−ε)‖u‖ ≥ en(λ−2ε)‖u‖

and

‖Q(Tnx)A(x, n)u‖ = ‖A(x, n)Q(x)u‖ ≤ en(ν+ε)‖Q(x)u‖ ≤ en(ν+ε)‖Q(x)‖.‖u‖
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where we have used the inequality ‖u‖ = ‖(P (x) + Q(x))u‖ ≤ 2‖P (x)u‖ which
holds for all u ∈ K(x, 1). Combining the above expressions yields

‖Q(Tnx)A(x, n)u‖ ≤ en(ν+3ε−λ)‖Q(x)‖.‖P (Tnx)A(x, n)u‖

for every u ∈ K(x, 1), from which we conclude that for each δ > 0 we have
A(x, n)K(x, 1) ⊆ K(Tnx, δ) for all large enough n. Additionally we obtain

‖A(x, n)u‖ ≥ ‖P (Tnx)A(x, n)u‖ − ‖Q(Tnx)A(x, n)u‖

≥
(
en(λ−2ε) − en(ν+ε)‖Q(x)‖

)
‖u‖

for every u ∈ K(x, 1), which gives (7) when n is large enough.
To complete the proof we show that for every δ ∈ (0, 1) we have K(Tnx, δ) ⊆

K(x, 1) for infinitely many n. Given δ ∈ (0, 1), choose κ > 0 such that δ−1−2κ(1+
δ−1) > 1. By Lemma 2.2 we have ‖P (x)− P (Tnx)‖ < κ for infinitely many n > 0.
For each such n we have

‖P (x)u‖ ≥ ‖P (Tnx)u‖ − κ‖u‖ ≥ δ−1‖Q(Tnx)u‖ − κ‖u‖
≥ δ−1‖Q(x)u‖ − κ(1 + δ−1)‖u‖

for every u ∈ K(Tnx, δ), where we have used the relation ‖P (x) − P (Tnx)‖ =
‖Q(x)−Q(Tnx)‖ which follows from the definition of Q. If u ∈ K(Tnx, δ)\K(x, 1)
then additionally ‖u‖ < 2‖Q(x)u‖ and therefore

‖P (x)u‖ >
(
δ−1 − 2κ(1 + δ−1)

)
‖Q(x)u‖ ≥ ‖Q(x)u‖

contradicting u /∈ K(x, 1). We conclude that K(Tnx, δ)\K(x, 1) = ∅ and therefore
K(Tnx, δ) ⊆ K(x, 1) as required. The proof of Theorem 1.4 is complete.

The proof of Theorem 1.5 may be undertaken by pursuing mutatis mutandis
the proof of Theorem 1.4, if we allow the additional assumption that T is invertible.
In this case we apply the following result in lieu of Theorem 2.1.

Theorem 2.3. Let T be an ergodic invertible measure-preserving transforma-
tion of a complete probability space (X,F , µ), let A : X × N → Matd(R) be a
measurable cocycle such that

∫
log+ ‖A(x, 1)‖ dµ(x) < ∞, and define the quantity

λ := infn≥1
1
n

∫
log ‖A(x, n)‖ dµ(x). Then there exists a measurable T -invariant set

Λ ⊆ X satisfying µ(Λ) = 1 with the following properties. There exists an integer
p ∈ {1, . . . , d}, a finite sequence λ = λ1 > . . . > λp ≥ −∞, and a corresponding
sequence of measurable functions F1, . . . , Fp from Λ into the Grassmannian of Rd,
such that for every x ∈ Λ we have F1(x)⊕· · ·⊕Fp(x) = Rd, A(x, n)Fi(x) ⊆ Fi(Tnx)
for each 1 ≤ i ≤ p and n ∈ N, and

lim
n→∞

1
n

log
‖A(x, n)v‖
‖v‖

= λi

uniformly for v ∈ Fi(x) \ {0}.

For a proof see [8]. The part of the statement dealing with uniform convergence
is not declared in a completely explicit fashion in that article but features clearly
in the proof. Since Matd(R) is separable, a suitable analogue of Lemma 2.2 may
be proved easily without the additional requirement of µ-continuity.

To complete the proof of Theorem 1.5 it remains to show that its result may
be extended from the case of invertible T to the general case. Given a measure-
preserving transformation T of a probability space (X,F , µ), recall from e.g. [5]
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that there exist an invertible transformation T̂ of a probability space (X̂, F̂ , µ̂)
and a measurable map π : X̂ → X such that π∗µ̂ = µ and T ◦ π = π ◦ T̂ µ̂-
a.e. Now, given a cocycle A : X × N → Matd(R) which satisfies the conditions of
Theorem 1.5, note that the function Â : X̂ × N → Matd(R) defined by Â(x, n) :=
A(πx, n) is a measurable cocycle with respect to T̂ . Since

∫
X

log+ ‖A(x, 1)‖dµ =∫
X̂

log+ ‖Â(x, 1)‖dµ̂(x) by construction, Â meets the desired integrability condition
and we obtain

µ

({
x ∈ X : lim sup

n→∞
ρ(A(x, n))1/n = lim

n→∞
‖A(x, n)‖1/n

})

= µ̂

({
x ∈ X̂ : lim sup

n→∞
ρ(Â(x, n))1/n = lim

n→∞
‖Â(x, n)‖1/n

})
= 1

by applying Theorem 1.5 in the invertible case.

3. Proof of Theorem 1.3

To begin the proof, we claim that it is sufficient to demonstrate Theorem 1.3
under the additional hypotheses that A is compact and consists solely of injec-
tive elements of B(X). We shall first show that if Theorem 1.3 holds for com-
pact sets of bounded operators then it also must hold for precompact sets of
bounded operators. To see this, fix a precompact set A ⊆ B(X) and suppose that
%̂(A) = max{%χ(A), %r(A)} and %f (A) = %χ(A). It follows from Proposition 1.2 that
the maps ‖ · ‖χ, ‖ · ‖f : B(X) → R are continuous, whereupon a simple inspection
of the definitions yields %̂(A) = %̂(A), %χ(A) = %χ(A) and %f (A) = %f (A) so that in
particular (2) holds. If %̂(A) = %χ(A) then (1) is clearly satisfied and the argument
is complete. If otherwise, given any small enough ε > 0 there exist infinitely many
n ∈ N such that

sup
A∈A

n
ρ(A)1/n > %̂(A)− ε > sup

A∈A
n
‖A‖1/nχ .

Given such an n, choose any B ∈ A
n

with ρ(B)1/n > %̂(A)− ε. Since ρ(B) > ‖B‖χ
the operator B has essential spectral radius strictly smaller than its spectral radius,
and it follows easily that B is a point of continuity of the spectral radius functional
ρ : B(X)→ R (see [24, Lemma 9.3] for details). Consequently we have

sup
A∈An

ρ(A)1/n ≥ ρ(B)1/n > %̂(A)− ε = %̂(A)− ε,

and since this holds for infinitely many n we deduce that %r(A) ≥ %̂(A) − ε. We
conclude that %r(A) = %̂(A) and (1) is satisfied.

We next show that if Theorem 1.3 holds for compact sets of injective bounded
operators then it must hold for all compact sets of bounded operators. We apply a
trick used by R. Mañé [14] and P. Thieullen [28] which resembles the construction
of the invertible natural extension of a dynamical system. Define a new Banach
space (X∞, ‖ · ‖) by X∞ := XN and ‖(vi)i∈N‖ = sup{‖vi‖ : i ∈ N}. Let (αi)i∈N be
a strictly decreasing sequence in (0, 1] with the property that for any subadditive
sequence (an)n∈N,

lim
n→∞

an
n

= lim
n→∞

1
n

max
0≤k≤n

(
an−k +

k∑
i=0

logαi

)
.
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(The existence of such a sequence was proved in [28]). Define a map E : B(X) →
B(X∞) by E(L)v1 = Lv1, E(L)vi+1 = αivi. Clearly E(L) is an injective operator for
any L ∈ B(X). The reader may easily verify that for each n ∈ N and L1, . . . , Ln ∈
B(X),

‖E(Ln) · · ·E(L1)‖ = max
0≤k≤n

(
‖Ln−k · · ·L1‖.

k∏
i=0

αi

)
with the same relation holding for the seminorms ‖ · ‖χ and ‖ · ‖f . As a particular
consequence it follows that ρ(E(Ln) · · ·E(L1)) = ρ(Ln · · ·L1) for any L1, . . . , Ln
and hence %r(E(A)) = %r(A). Since for each n ∈ N

sup
A∈E(A)n

‖A‖1/n = max
0≤k≤n

(
sup

A∈An−k

‖A‖.
k∏
i=0

αi

)1/n

and similarly for ‖·‖χ and ‖·‖f , we conclude that %̂(A) = %̂(E(A)), %χ(A) = %χ(E(A))
and %f (A) = %f (E(A)). Since the map E is clearly continuous, E(A) is a compact
subset of B(X∞), and so if the conclusion of Theorem 1.3 is valid for the compact
set of injective operators E(A) then it must be valid for A also.

For the remainder of this section, therefore, we shall assume that A ⊂ B(X) is
a compact nonempty set of injective bounded operators. Without loss of generality
we shall assume %̂(A) > %χ(A) ≥ 0, since if this relation does not hold then %̂(A) =
%f (A) = %χ(A) by Proposition 1.2, and Theorem 1.3 thus holds trivially.

The following theorem on subadditive function sequences derives from a theo-
rem of S. J. Schreiber [21]. A similar result was also given by R. Sturman and J.
Stark independently of Schreiber’s work [27]. A complete proof may be found in
[16].

Theorem 3.1. Let T : X → X be a continuous transformation of a compact
metric space, and let MT be the set of all T -invariant Borel probability measures
on X. Let (fn)n≥1 be a sequence of upper semi-continuous functions fi : X →
R ∪ {−∞} such that fn+m(x) ≤ fn(Tmx) + fm(x) for every x ∈ X and n,m ∈ N.
Then

lim
n→∞

sup
x∈X

1
n
fn(x) = sup

µ∈MT

inf
n≥1

1
n

∫
fn dµ.

Define X = AZ and equip this set with the product topology under which it
is compact and metrisable. Define a homeomorphism T : X → X by T [(Ai)i∈Z] =
(Ai+1)i∈Z and a continuous map Π: X → B(X) by Π[(Ai)i∈Z] = A1. Define a
continuous cocycle A : X×N→ B(X) by setting A(x) = Π(Tn−1x) · · ·Π(x) for each
x ∈ X and n ≥ 1, and let MT denote the set of all T -invariant Borel probability
measures on X, which is nonempty by the Krylov-Bogolioubov Theorem. We have

%̂(A) = lim
n→∞

sup
x∈X
‖A(x, n)‖1/n, %χ(A) = lim

n→∞
sup
x∈X
‖A(x, n)‖1/nχ ,

%f (A) = lim
n→∞

sup
x∈X
‖A(x, n)‖1/nf , %r(A) = lim sup

n→∞
sup
x∈X

ρ(A(x, n))1/n

directly from the definitions. Applying Theorem 3.1 with fn(x) := log ‖A(x, n)‖
we deduce

log %̂(A) = sup
µ∈MT

inf
n≥1

1
n

∫
log ‖A(x, n)‖ dµ(x).
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By [16, Lemma 3.5] we may choose µ ∈MT such that

inf
n≥1

1
n

∫
log ‖A(x, n)‖ dµ(x) = log %̂(A) > log %χ(A).

Let Λ, λ, χ be as in Theorem 1.4. By the subadditive ergodic theorem we have∫
λ dµ = log %̂(A) and thus there is a positive measure set Z ⊆ Λ such that every

z ∈ Z satisfies

λ(z) ≥ log %̂(A) > log %χ(A) ≥ lim
n→∞

1
n

log ‖A(z, n)‖χ = χ(z).

Applying Theorem 1.4 we deduce that every z ∈ Z satisfies

lim sup
n→∞

1
n

log ρ(A(z, n)) = λ(z) ≥ log %̂(A)

and thus log %r(A) ≥ log %̂(A). Since clearly %r(A) ≤ %̂(A) we conclude that %̂(A) =
%r(A) which yields (1).

By Proposition 1.2 we have %f (A) ≥ %χ(A). Suppose %f (A) > %χ(A). Applying
Theorem 3.1 with fn(x) := log ‖A(x, n)‖f we deduce that there exists µ ∈MT for
which

inf
n≥1

1
n

∫
log ‖A(x, n)‖f dµ(x) > %χ(A).

Via Proposition 1.2 this implies

inf
n≥1

1
n

∫
log ‖A(x, n)‖ dµ(x) > inf

n≥1

1
n

∫
log ‖A(x, n)‖χ dµ(x)

and so Theorem 1.4 is applicable. Applying the subadditive ergodic theorem again
we deduce that there is a positive-measure set Z ⊆ Λ such that every z ∈ Z satisfies

lim
n→∞

1
n

log ‖A(z, n)‖f > %χ(A) ≥ lim
n→∞

1
n

log ‖A(z, n)‖χ = χ(z)

contradicting (3). We conclude that %f (A) = %χ(A) and the proof is complete.
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14. Ricardo Mañé, Lyapounov exponents and stable manifolds for compact transformations, Geo-

metric dynamics (Rio de Janeiro, 1981), Lecture Notes in Math., vol. 1007, Springer, Berlin,
1983, pp. 522–577. MR MR730286 (85j:58126)

15. Bruce E. Moision, Alon Orlitsky, and Paul H. Siegel, On codes that avoid specified differences,

IEEE Trans. Inform. Theory 47 (2001), no. 1, 433–442. MR MR1820392 (2001k:94084)
16. Ian David Morris, A rapidly-converging lower bound for the joint spectral radius via multi-

plicative ergodic theory, preprint, 2009.

17. Roger D. Nussbaum, The radius of the essential spectrum, Duke Math. J. 37 (1970), 473–478.
MR MR0264434 (41 #9028)

18. P. Rosenthal and A. So ltysiak, Formulas for the joint spectral radius of noncommuting Banach

algebra elements, Proc. Amer. Math. Soc. 123 (1995), no. 9, 2705–2708. MR MR1257123
(95k:47008)

19. Gian-Carlo Rota and Gilbert Strang, A note on the joint spectral radius, Nederl. Akad. Weten-
sch. Proc. Ser. A 63 = Indag. Math. 22 (1960), 379–381. MR MR0147922 (26 #5434)

20. David Ruelle, Characteristic exponents and invariant manifolds in Hilbert space, Ann. of

Math. (2) 115 (1982), no. 2, 243–290. MR MR647807 (83j:58097)
21. Sebastian J. Schreiber, On growth rates of subadditive functions for semiflows, J. Differential

Equations 148 (1998), no. 2, 334–350. MR MR1643183 (2000a:37004)

22. Mau-Hsiang Shih, Jinn-Wen Wu, and Chin-Tzong Pang, Asymptotic stability and generalized
Gelfand spectral radius formula, Linear Algebra Appl. 252 (1997), 61–70. MR MR1428628

(97k:15028)

23. V. S. Shul′man, Invariant subspaces of Volterra operators, Funktsional. Anal. i Prilozhen. 18
(1984), no. 2, 85–86. MR MR745716 (85g:47008)
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