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Abstract

A set of matrices is said to have the finiteness property if the maximal
rate of exponential growth of long products of matrices drawn from that
set is realised by a periodic product. The extent to which the finiteness
property is prevalent among finite sets of matrices is the subject of ongo-
ing research. In this article we give a condition on a finite irreducible set
of matrices which guarantees that the finiteness property holds not only
for that set, but also for all sufficiently nearby sets of equal cardinality.
We also prove a theorem giving conditions under which the Barabanov
norm associated to a finite irreducible set of matrices is unique up to mul-
tiplication by a scalar, and show that in certain cases these conditions are
also persistent under small perturbations.

MSC-2010 codes: 15A18, 15A60.

1 Introduction

Let A be a bounded set of d × d real or complex matrices. The joint spectral
radius of A, introduced by G.-C. Rota and W. G. Strang in [28], is defined to
be the quantity

%(A) = lim
n→∞

sup
{
‖Ain · · ·Ai1‖1/n : Ai ∈ A

}
,

which may easily be shown to yield a finite value which is independent of the
choice of norm ‖·‖. The joint spectral radius has been the subject of substantial
recent research interest, which has dealt with its applications [15, 18, 24, 11,
23, 14], with issues of its computation and approximation [18, 23, 20, 4, 2, 12,
21, 26, 27, 29], and with the study of its mathematical properties [1, 13, 30,
31]. In this article we investigate the finiteness property, a property of sets of
matrices A which facilitates the computation of %(A), and the Barabanov norm,

∗This research was funded by EPSRC grant EP/E020801/01.
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a theoretical construction associated to a set of matrices A whose applications
have been explored in [20, 1, 30, 19].

Let us begin by establishing some notation. Throughout this article we shall
use the symbol K to stand for either R or C. Statements which are expressed
using K should thus be understood as being valid in both the case K = R and
the case K = C. For d ∈ N we let Matd(K) denote the ring of d×d matrices over
K, and let ||| · ||| denote the Euclidean norm on Kd. To simplify the statement of
some of our results we shall find it convenient to work primarily with ordered
sets of elements of Matd(K). Thus, for each pair of integers r, d ∈ N we let
Or(Kd) denote the set of all ordered r-tuples of elements of Matd(K). We equip
each Or(Kd) with the metric

dOr
[(A1, . . . , Ar), (B1, . . . , Br)] := max

1≤i≤r
|||Ai −Bi|||.

An r-tuple A = (A1, . . . , Ar) ∈ Or(Kd) is said to have the finiteness property
if there exist n ∈ N and (i1, . . . , in) ∈ {1, . . . , r}n such that ρ(Ain · · ·Ai1)1/n =
%(A). The finiteness property was introduced by J. Lagarias and Y. Wang, who
conjectured in [21] that it is satisfied by every finite set of matrices. Theoretical
results giving various preconditions for the finiteness property were established
in [21, 16]. The existence of pairs of matrices lacking the finiteness property
was later demonstrated by T. Bousch and J. Mairesse in [8] (see also [19, 5]).
Exceptions to the finiteness property nonetheless seem to be rare: M. Maesumi
conjectures in [22] that the finiteness property holds for almost all finite sets
of matrices in the sense of Lebesgue measure on Or(Kd), and in a similar vein
V. Blondel and R. Jungers conjecture in [17] that the finiteness property holds
for every finite set of rational matrices. In the first theorem in this article
we contribute to the study of the finiteness property by showing that for each
r, d ≥ 2, an open set of r-tuples of matrices inOr(Kd) has the finiteness property.

We shall call an r-tuple A = (A1, . . . , Ar) ∈ Or(Kd) reducible if there ex-
ists a linear space V ⊂ Kd, not equal to {0} or Kd, which is preserved by
every Ai. Otherwise A shall be called irreducible. Reducibility of A is equiv-
alent to the existence of nonzero vectors u, v ∈ Kd such that for each n ∈ N,
〈Ain · · ·Ai1u, v〉 = 0 for every (i1, . . . , in) ∈ {1, . . . , r}n. We let Ir(Kd) denote
the set of irreducible elements of Or(Kd). It is straightforward to show that
Ir(Kd) is open and dense in Or(Kd).

A norm ‖ · ‖ on Kd will be called extremal for A = (A1, . . . , Ar) ∈ Or(Kd)
if ‖Ai‖ ≤ %(A) for every i. We shall say that ‖ · ‖ is a Barabanov norm for A if
the equation

%(A)‖v‖ = max
1≤i≤r

‖Av‖ (1)

is satisfied for every v ∈ Kd, which in particular implies that ‖ · ‖ is extremal.
If A is irreducible then %(A) is nonzero and a Barabanov norm for A exists
[1, 30]. Clearly ‖ · ‖ is a Barabanov norm for A if and only if every norm
proportional to ‖ · ‖ is also a Barabanov norm, so we shall simply say that A
has a ‘unique’ Barabanov norm to mean that all of the Barabanov norms for A
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are proportional to one another. In the second theorem in this article we shall
give a sufficient condition for the Barabanov norm of A to be unique.

To state our first theorem we require some further definitions. For each
r, n ∈ N we let Ωnr denote the set {1, . . . , r}n , which we refer to as the set of
words of length n over the alphabet {1, . . . , r}. We shall say that two words
z = (z1, . . . , zn), ω = (ω1, . . . , ωn) ∈ Ωnr are rotation equivalent, and write z ∼ ω,
if there exists k such that (z1, . . . , zn) = (ωk+1, . . . , ωn, ω1, . . . , ωk). We write
ω = zp, and say that ω is a power of z, if ω ∈ Ωnpr consists of p repetitions of
the word z ∈ Ωnr . Clearly ∼ defines an equivalence relation on each Ωnr , and
if (A1, . . . , An) ∈ Or(Kd) and (z1, . . . , zn) ∼ (ω1, . . . , ωn) then ρ(Azn

· · ·Az1) =
ρ(Aωn . . . Aω1). In the terminology of [5], z ∼ ω if and only if z and ω have the
same length and are ‘essentially equal’.

If A ∈ Or(Kd) and ‖ · ‖ is any matrix norm, then by a theorem of M. A.
Berger and Y. Wang [2],

%(A) = inf
n∈N

max
(i1,...,in)∈Ωn

r

‖Ain · · ·Ai1‖1/n = sup
n∈N

max
(i1,...,in)∈Ωn

r

ρ(Ain · · ·Ai1)1/n,

(2)
which in particular implies that % : Or(Kd)→ R is continuous for every r, d ∈ N.

Let us say that A = (A1, . . . , Ar) ∈ Ir(Kd) satisfies the strong finiteness
hypothesis if there exists a word ω = (ω1, . . . , ωn) ∈ Ωnr , which we call a charac-
teristic word for A, such that for every Barabanov norm ‖ · ‖B for A, we have
‖Ain · · ·Ai1‖B < %(A)n whenever (i1, . . . , in) � (ω1, . . . , ωn). This condition
implies that ‖(Aωn

· · ·Aω1)m‖B = %(A)nm for every m ∈ N, since if this were
to fail for some m then we would have

max
{∥∥Ai(m+1)n

· · ·Ai1
∥∥
B

:
(
i1, . . . , i(m+1)n

)
∈ Ω(m+1)n

r

}
< %(A)(m+1)n

contradicting (2). It follows that if A satisfies the strong finiteness hypothesis
with characteristic word (ω1, . . . , ωn) then it satisfies the finiteness property
with %(A) = ρ(Aωn

· · ·Aω1)1/n. The reader may note that if ω ∈ Ωnr is a
characteristic word for A, then ω̂ ∈ Ωnr is a characteristic word if and only if
ω̂ ∼ ω, and for every p ∈ N, ωp ∈ Ωnpr is also a characteristic word for A. The
strong finiteness hypothesis has the following important property:

Theorem 1.1. Let r, d ∈ N and ω ∈ Ωnr . Then the set of all A ∈ Ir(Kd) such
that A satisfies the strong finiteness hypothesis with characteristic word ω is an
open subset of Ir(Kd).

The strong finiteness hypothesis appears to be problematic to verify, even
in cases where A is otherwise easily analysed. Some illustrative examples are
given in the following section. It is tempting to conjecture the following possible
generalisation, which would be of broader practical value:

Conjecture 1.2. Let r, d ∈ N and ω̂ ∈ Ωnr , and let Uω̂ ⊂ Ir(Kd) be the set of
all r-tuples A = (A1, . . . , Ar) for which there exists an extremal norm ‖·‖A with
the property that ‖Aωn

· · ·Aω1‖A < %(A)n whenever ω̂ � (ω1, . . . , ωn). Then Uω̂
is an open subset of Ir(Kd).
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We remark that the principal obstruction to such a result would appear to
be the lack of a natural candidate extremal norm ‖ · ‖B for B ∈ Ir(Kd) close
to A. Indeed, the proof of Theorem 1.1 functions by showing that if A satisfies
the strong finiteness hypothesis, then every Barabanov norm for B is such a
candidate norm.

While the strong finiteness hypothesis is quite a strict condition, we are
nonetheless able to construct examples in which it is satisfied:

Proposition 1.3. Let r, n ∈ N and ω = (ω1, . . . , ωn) ∈ Ωnr , and suppose that ω
is not equal to a power of a shorter word. Then there exists A = (A1, . . . , Ar) ∈
Ir(Kn) such that A satisfies the strong finiteness hypothesis with characteristic
word ω, the Ai are pairwise distinct, and rank (Aωn · · ·Aω1) = 1.

An easy consequence of Theorem 1.1 and Proposition 1.3 is that for every
r, d ≥ 2, there exists a nonempty open subset of Or(Kd) in which the finiteness
property is everywhere satisfied. In view of Proposition 1.3 it seems natural to
ask the following question, which the author is not at present able to resolve: for
fixed r, d ≥ 2, is it the case that every ω ∈

⋃∞
n=1 Ωnr arises as the characteristic

word of some A ∈ Ir(Cd)?
In order to state our second theorem we require some further definitions.

Given A = (A1, . . . , Ar) ∈ Or(Kd) let us define

An := {Ain · · ·Ai1 : (i1, . . . , in) ∈ Ωnr }

for each n ∈ N. We shall say that A is product bounded if the set
⋃
n∈NAn is a

bounded subset of Matd(K), and that A is relatively product bounded if %(A) > 0
and %(A)−1A is product bounded. If %(A) > 0 and A admits an extremal
norm then clearly A must be relatively product bounded, so in particular every
irreducible A has this property. For relatively product bounded A the limit
semigroup of A, introduced by F. Wirth in [30], is defined to be the set

S(A) :=
∞⋂
m=1

( ∞⋃
n=m

%(A)−nAn

)
.

In this article we shall say that A ∈ Or(Kd) has the rank one property if it is
relatively product bounded and every nonzero element of S(A) has rank one.
By Proposition 1.3, every Ir(Kd) with r, d ≥ 2 contains some A satisfying the
rank one property. It turns out that the rank one property is also stable under
small perturbations:

Proposition 1.4. For each d, r ∈ N the set of all A ∈ Ir(Kd) satisfying the
rank one property is open. In the particular case K = C, d = 2 this set is also
dense.

As an aside, we remark that there exist open subsets of I2(R2) in which the
rank one property does not hold. For example, let us consider the irreducible
(with respect to R2) pair of matrices A = (A1, A2) given by

A1 =
(

0 1
1 0

)
, A2 =

(
1
2 0
0 1

2

)
.
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Since clearly |||A1||| = ρ(A1) = 1 and |||A2||| = 1
2 we have %(A) = ρ(A1) = 1. If ‖·‖

is a Barabanov norm for A then ‖A2‖ = 1
2 < %(A) since this matrix is a scalar

multiple of the identity; it follows thatA satisfies the strong finiteness hypothesis
with ω = (1). By Theorem 1.1 there exists a small open neighbourhood U of
A such that every B = (B1, B2) ∈ U is irreducible and satisfies %(B) = ρ(B1).
However, if B is close enough to A then B1 must have a conjugate pair of
eigenvalues, and it follows that S(B) contains the identity matrix when B is
close enough to A.

We shall say that A = (A1, . . . , Ar) ∈ Or(Kd) has the unbounded agreements
property if for any N ∈ N and any pair of sequences i1, i2 : N→ {1, . . . , r} such
that

lim sup
n→∞

( |||Aim(n) · · ·Aim(1)|||
%(A)n

)
> 0

for m = 1, 2, there exist n1, n2 ∈ N such that i(n1 + k) = j(n2 + k) throughout
the range 1 ≤ k ≤ N . It is straightforward to show that the strong finiteness hy-
pothesis implies the unbounded agreements property, and thus Proposition 1.3
implies that the unbounded agreements property is also satisfied in a nonempty
subset of Ir(Kd) which contains an open set. On the other hand, the unbounded
agreements property does not imply the finiteness property. If A denotes the
pair of matrices shown in [8] to lack the finiteness property, then the existence
of a unique height-maximizing shift-invariant measure on {0, 1}N forces the un-
bounded agreements property to hold. We defer the proof of this assertion to a
later publication.

We may now state our second theorem:

Theorem 1.5. Suppose that A ∈ Or(Kd) is relatively product-bounded and
satisfies both the unbounded agreements property and the rank one property.
Then there exists at most one Barabanov norm for A up to multiplication by a
scalar.

By combining all four of the results in this section one may easily obtain:

Corollary 1.6. For each r, d ≥ 2 there exists a nonempty open set U ⊂ Ir(Kd)
with the property that for every A ∈ U , A satisfies the finiteness property, the
unbounded agreements property and the rank one property, and has a unique
Barabanov norm.

The remainder of this article is structured as follows. In the following section
we give some examples of the applications and limitations of Theorems 1.1 and
1.5, showing in particular that both the unbounded agreements property and
the rank one property are necessary parts of the latter theorem. In §3 we give
the proofs of Theorems 1.1 and 1.5 and Propositions 1.3 and 1.4. Finally, in §4
we briefly describe the relationship between Theorems 1.1 and 1.5 and certain
recent results in ergodic theory.
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2 Examples

In each of the examples below we may take K to be either R or C. The reader
may readily verify that each example is irreducible in both of the two cases.

Example 1. Define

A1 =
(

0 1
λ1 0

)
, A2 =

(
0 λ2

1 0

)
,

where 0 ≤ |λ1|, |λ2| < 1. Then A = (A1, A2) satisfies the strong finiteness
hypothesis, has the unbounded agreements property and the rank one property,
and has a unique Barabanov norm. (In the case λ1 = λ2 = 0 this is the example
given by Proposition 1.3 with r = n = 2.)

Proof. A straightforward calculation yields |||A1A2||| = |||A2A1||| = ρ(A1A2) = 1,
|||A2

1||| = |λ1| < 1 and |||A2
2||| = |λ2| < 1, from which it follows that %(A) = 1.

If i : N → {1, 2} has lim supn→∞ |||Ai(n) · · ·Ai(1)||| > 0 then it follows that there
must exist n0 > 0 such that i(n0+2n+1) = 1 and i(n0+2n) = 2 for every n ∈ N,
which implies the unbounded agreements property. Since |detA1|, |detA2| < 1
it is clear that every element of S(A) has determinant zero and hence has rank
at most equal to one. The norm defined by ‖(x, y)T ‖ := max{|x|, |y|} is a
Barabanov norm for A, since for each v = (x, y)T ∈ K2

max {‖A1v‖, ‖A2v‖} = max{|λ1x|, |y|, |λ2y|, |x|} = max{|x|, |y|} = ‖v‖.

By Theorem 1.5 it is the only such norm up to scalar multiplication. Direct
calculation then shows that ‖A2

1‖, ‖A2
2‖ < 1 and hence the strong finiteness

hypothesis holds.

Example 2. Define

A1 =
(

1 0
0 λ

)
, A2 =

(
0 λ
λ 0

)
,

where 0 < |λ| < 1. Then A = (A1, A2) has the finiteness property, the un-
bounded agreements property and the rank one property, but does not satisfy
the strong finiteness hypothesis.

Proof. Straightforward calculation shows that |||A1||| = ρ(A1) = 1 and |||A2||| =
|λ| < 1 so that in particular %(A) = 1 and A has the finiteness property. The
unbounded agreements property and the rank one property follow in the same
manner as for the previous example. Define a norm on K2 by

∥∥(x, y)T
∥∥ =

max{|x|, |λy|}. For each v = (x, y)T ∈ K2 we have

max{‖A1v‖, ‖A2v‖} = max
{
|x| ,

∣∣λ2y
∣∣ , |λy| , ∣∣λ2x

∣∣} = max{|x|, |λy|} = ‖v‖

and therefore ‖ · ‖ is a Barabanov norm for A. Define u := (0, 1)T ∈ K2. For
each n ∈ N we have

∥∥An−1
1 A2u

∥∥ = |λ| = ‖u‖ and therefore
∥∥An−1

1 A2

∥∥ = 1,
and clearly we also have ‖An1‖ = 1. We deduce that no ω ∈ Ωn2 can be a
characteristic word for A, and since n is arbitrary we conclude that A does not
satisfy the strong finiteness hypothesis.
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Example 3. Define

A1 =
(

1 0
0 −1

)
, A2 =

(
0 λ
λ 0

)
,

where 0 < |λ| < 1. Then A = (A1, A2) has the unbounded agreements property
and the finiteness property, but lacks the rank one property, and has more than
one Barabanov norm.

Proof. Clearly |||A1||| = ρ(A1) = 1 and |||A2||| = |λ| < 1. It follows that %(A) = 1
and that A satisfies the finiteness property, and the unbounded agreements
property follows as before. It is clear that I ∈ S(A) and hence A does not satisfy
the rank one property. For any p ≥ 1 the norm ‖ · ‖p defined by ‖(x, y)T ‖p =
(|x|p + |y|p)1/p is a Barabanov norm since ‖A2v‖p ≤ ‖A1v‖p = ‖v‖p for all
v ∈ K2.

Example 4. Define

A1 =
(

1 0
0 0

)
, A2 =

(
0 0
0 1

)
, A3 =

(
0 λ
λ 0

)
,

where 0 < |λ| < 1. Then A = (A1, A2, A3) has the rank one property and the
finiteness property, but lacks the unbounded agreements property, and has more
than one Barabanov norm.

Proof. Clearly %(A) = 1, and A does not satisfy the unbounded agreements
property since limn→∞An1 = A1 6= 0 but also limn→∞An2 = A2 6= 0. If A ∈ An
with rankA = 2 then necessarily A = An3 and hence |||A||| = |λ|n. It follows
that S(A) cannot contain a matrix of rank 2. If |λ| ≤ ξ ≤ |λ|−1 then the norm
‖·‖ξ defined by ‖(x, y)T ‖ξ = max{|x|, ξ|y|} is a Barabanov norm, since for every
v = (x, y)T ∈ K2

max {‖A1v‖ξ, ‖A2v‖ξ, ‖A3v‖ξ} = max {|x|, ξ|y|, |λy|, ξ|λx|}
= max {|x|, ξ|y|} = ‖v‖ξ

as required.

3 Proofs of Theorems 1.1 and 1.5 and Proposi-
tions 1.3 and 1.4

3.1 Proof of Theorem 1.1

Let N denote the set of all norms on Kd, and for ‖ · ‖1, ‖ · ‖2 ∈ N define

dN (‖ · ‖1, ‖ · ‖2) := sup
{∣∣∣∣log

(
‖v‖1
‖v‖2

)∣∣∣∣ : |||v||| = 1
}
.

It is clear that dN is a metric on N . Moreover, if Z ⊂ N is closed and has finite
diameter with respect to dN , then it follows from the Arzéla-Ascoli theorem
that Z is compact. We require the following lemma:
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Lemma 3.1. Let v0 ∈ Kd, let
(
A(k)

)∞
k=1

be a sequence of elements of Ir(Kd)
converging to some A ∈ Ir(Kd), and for each k let ‖·‖k be a Barabanov norm for
A(k) such that ‖v0‖k = 1. Then the sequence of norms ‖·‖k has an accumulation
point in N which is a Barabanov norm for A.

Proof. Let A = (A1, . . . , Ar) and A(k) =
(
A

(k)
1 , . . . , A

(k)
r

)
for each k ∈ N. By

hypothesis the set {A(k) : k ∈ N} ∪ {A} is a compact subset of Ir(Kd), and it
follows from [30, Theorem 4.1] that the set {‖ · ‖k : k ∈ N} has finite diameter
as a subset of N . It follows that there exist a subsequence (kj)∞j=1 and norm
‖ · ‖ ∈ N such that limj→∞ ‖ · ‖kj = ‖ · ‖. If v ∈ Kd, then for i = 1, . . . , r and
k ∈ N ∣∣∣∥∥∥A(kj)

i v
∥∥∥
k
− ‖Aiv‖k

∣∣∣ ≤ C∣∣∣∣∣∣∣∣∣A(k)
i −Ai

∣∣∣∣∣∣∣∣∣.|||v|||
and

|‖Aiv‖k − ‖Aiv‖| ≤ ‖Aiv‖
(
edN (‖·‖k,‖·‖) − 1

)
,

implying that
lim
j→∞

∥∥∥A(kj)
i v

∥∥∥
kj

= ‖Aiv‖

for all such i and v. We conclude that for every v ∈ Kd

‖v‖ = lim
j→∞

‖v‖kj
= lim
j→∞

max
1≤i≤r

∥∥∥A(kj)
i v

∥∥∥
kj

= max
1≤i≤r

‖Aiv‖

and ‖ · ‖ is a Barabanov norm for A.

For each ω = (ω1, . . . , ωn) and A = (A1, . . . , Ar) ∈ Ir(Kd) let us now define

Θω(A) := sup
{
‖Aωn · · ·Aω1‖1/n : ‖ · ‖ is a Barabanov norm for A

}
. (3)

Let v0 ∈ Kd \ {0} be arbitrary. If for each k we choose ‖ · ‖k ∈ N such that
‖Aωn

· · ·Aω1‖
1/n
k > Θω(A)− 1

k , then by rescaling each ‖ · ‖k so that ‖v0‖k = 1
and applying Lemma 3.1 with A(k) ≡ A, we see that the supremum in (3) is
always attained.

We claim that each Θω : Ir(Kd) → R is upper semi-continuous. For each
k ∈ N let A(k) =

(
A

(k)
1 , . . . , A

(k)
r

)
∈ Ir(Kd) and suppose that limk→∞A(k) =

A = (A1, . . . , Ar) ∈ Ir(Kd). Choose some arbitrary v0 ∈ Kd \ {0} and for each
k ∈ N let ‖·‖k be a Barabanov norm such that Θω(A(k)) =

∥∥∥A(k)
ωn · · ·A

(k)
ω1

∥∥∥
k

and

‖v0‖k = 1. Choose a sequence of integers (kj)∞j=1 such that limj→∞Θω(A(kj)) =
lim supk→∞Θω(A(k)). By Lemma 3.1, we may replace (kj) with a finer subse-
quence such that limj→∞ ‖ · ‖kj = ‖ · ‖ ∈ N , where ‖ · ‖ is a Barabanov norm
for A. It follows that

lim sup
k→∞

Θω

(
A(k)

)
= lim
j→∞

∥∥∥A(kj)
ωn
· · ·A(kj)

ω1

∥∥∥
kj

= ‖Aωn · · ·Aω1‖ ≤ Θω(A),
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since ‖ · ‖ is a Barabanov norm for A, which proves the claim.
Now let us consider some fixed ω̂ ∈ Ωnr . Since the supremum in (3) is

attained for every A and ω, it follows that A ∈ Ir(Kd) satisfies the strong
finiteness hypothesis with characteristic word ω̂ if and only if

max {Θω(A) : ω ∈ Ωnr and ω � ω̂} < %(A)n. (4)

We have shown that each of the functions Θω is upper semi-continuous, and
since % depends continuously on A it follows that the set of all A ∈ Ir(Kd)
solving the inequality (4) must be open. The proof is complete.

3.2 Proof of Proposition 1.3

Let r, n ∈ N, and let (ω1, . . . , ωn) ∈ Ωnr . We shall begin by proving Proposition
1.3 subject to the additional assumption that (ω1, . . . , ωn) includes at least one
instance of every symbol 1, . . . , r.

Let e1, . . . , en be the standard basis for Kn, and let ‖ · ‖ be the norm on
Kn given by ‖

∑n
k=1 λkek‖ = max |λk|. Define an r-tuple of matrices A =

(A1, . . . , Ar) by setting Aωi
ei := ei+1 for 1 ≤ i < n and Aωn

en := e1, and
Ajek := 0 in all other cases. Clearly Aωn

· · ·Aω1e1 = e1 and ‖Ai‖ ≤ 1 for every
i, and it follows that ρ(Aωn · · ·Aω1) = %(A) = 1. If 1 ≤ i < j ≤ r then by
hypothesis there is k such that j = ωk 6= i and therefore Aiek 6= Ajek, so in
particular we have Ai 6= Aj and the matrices forming A are pairwise distinct.

We claim that if (z1, . . . , zn) � (ω1, . . . , ωn) then Aωn
· · ·Aω1 = 0, which

clearly implies that (ω1, . . . , ωn) must be a characteristic word for A. Let
(z1, . . . , zn) ∈ Ωnr and suppose that Azn · · ·Az1 6= 0. To simplify notation in
the remainder of this paragraph it will be convenient to add subscripts modulo
n, identifying n+ 1 with 1, n+ 2 with 2, et cetera. Since Azn

· · ·Az1 is nonzero
there must exist k such that Azn

· · ·Az1ek 6= 0. From the definition of A it
follows that z1 = ωk and Az1ek = ek+1. We must then have Az2ek+1 6= 0 and
by the same reasoning it follows that z2 = ωk+1 and Az2Az1ek = Az2ek+1 =
ek+2. Proceeding inductively in this fashion we obtain Azn · · ·Az1ek = ek and
(z1, . . . , zn) = (ωk+1, . . . , ωn, ω1, . . . , ωk), proving the claim.

If Aωn
· · ·Aω1ek 6= 0 for some k 6= 1 then the above reasoning shows that

(ω1, . . . , ωn) = (ωk, . . . , ωn, ω1, . . . , ωk−1). It follows from this that (ω1, . . . , ωn)
is equal to (ω1, . . . , ωq)p where q = hcf(k−1, n) and n = pq. Since (ω1, . . . , ωn) is
by hypothesis not equal to a power of a shorter word we deduce that Aωn · · ·Aω1

has rank equal to one as claimed.
It remains to show that A is irreducible. Let u, v ∈ Kd with u 6= 0,

and suppose that for every m ∈ N one has 〈Aim · · ·Ai1u, v〉 = 0 for every
(i1, . . . , im) ∈ Ωmr . We claim that necessarily v = 0, implying the irreducibility
of A. Since u 6= 0 there is k such that 〈u, ek〉 6= 0. Now, from the previous two
paragraphs it follows that

Aωk+1 · · ·Aω1Aωn
· · ·Aωk

u = 〈u, ek〉 ek
and therefore

Aωn
· · ·Aω1Aωn

· · ·Aωk
u = 〈u, ek〉 e1.

9



We deduce in particular that 〈e1, v〉 = 0, and that for each m ∈ N we must
have 〈Aim · · ·Ai1e1, v〉 = 0 for every (i1, . . . , im) ∈ Ωmr . Since by construction
Aω`
· · ·Aω1e1 = e`+1 for 1 ≤ ` < n, we conclude that 〈ej , v〉 must equal zero for

every j, and it follows that v = 0, proving the claim. This completes the proof
of the theorem subject to our additional assumption.

The general case now follows easily. It suffices to assume that there is 1 ≤
r′ < r such that (ω1, . . . , ωn) includes at least one instance of every symbol
1, . . . , r′, since we can always get to and from this situation by perturbing the
indices i = 1, . . . , r in some manner. Let (A1, . . . , Ar′) be the r′-tuple of matrices
produced by the preceding argument. To extend this to a full r-tuple we simply
let Ar′+1, . . . , Ar be given by small scalar multiples of the matrices already
defined. If the modulus of each scalar is strictly less than one then it is clearly
that this yields an irreducible r-tuple A with %(A) = 1. If ‖ · ‖A is a Barabanov
norm and z = (z1, . . . , zn) ∈ Ωnr with z � ω, then either ‖Azn

· · ·Az1‖A = 0 if
zi ≤ r′ for every i, or ‖Azn

· · ·Az1‖A ≤
∏n
i=1 ‖Azi

‖A < 1 = %(A)n if otherwise.
The proof is complete.

3.3 Proof of Proposition 1.4

We shall use the following simple characterisation of the rank one property:

Lemma 3.2. Let A ∈ Or(Kd) be relatively product bounded. Then A has the
rank one property if and only if %(∧2A) < %(A)2, where ∧2A is the r-tuple which
consists of the second exterior powers of the matrices comprising A.

Proof. By normalising A if necessary it clearly suffices to consider the case
%(A) = 1. Let ‖ · ‖∧2 denote the standard norm on Kd ∧ Kd. Recall that for
every A ∈ Matd(K) we have∥∥∧2A

∥∥
∧2 = |||A|||. inf{|||A−B||| : rankB ≤ 1} (5)

see e.g. [3]. In particular %(∧2A) is at most 1.
Suppose that %(∧2A) < 1. Given any nonzero matrix A ∈ S(A), choose

an increasing sequence of integers (nk)∞k=1 and a sequence of matrices (Ank
)∞k=1

such that Ank
∈ Ank

for every k, and limk→∞Ank
= A. Since %(∧2A) < 1 we

have ‖ ∧2 A‖∧2 = limk→∞ ‖ ∧2 Ank
‖∧2 = 0. It follows from (5) that A has rank

equal to 1 and we conclude that the rank one property holds.
Suppose conversely that %(∧2A) = 1. It follows that we can choose a se-

quence (An)∞n=1 with each An ∈ An such that ‖∧2An‖∧2 ≥ 1, since if for any n
this choice were not possible we would have %(∧2A) < 1 by (2). Since A is prod-
uct bounded we may take a subsequence (nk)∞k=1 and matrix A ∈ S(A) such
that limk→∞Ank

= A. Since ‖∧2An‖∧2 ≥ 1 for every n we have ‖∧2A‖∧2 ≥ 1.
By (5) it follows that the rank of A is at least two, and we conclude that the
rank one property does not hold.

The proof of Proposition 1.4 now follows easily. Since the maps from Ir(Kd)
into R given by A 7→ %(A) and A 7→ %(∧2A) are both continuous, the set of all
A ∈ Ir(Kd) such that %(∧2A) < %(A)2 is open.
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To see that the rank one property holds for a dense subset of Ir(C2) we
argue as follows. If A = (A1, . . . , Ar) meets the condition that each Ai has two
distinct eigenvalues which are unequal in modulus, then

%(∧2A) = max
1≤i≤r

|detAi| < max
1≤i≤r

ρ(Ai)2 ≤ %(A)2.

Since this condition is easily seen to be hold for a dense open subset of Or(C2),
it follows that it holds for a dense open subset of Ir(Cd) also, which implies
that the rank one property holds for this set.

3.4 Proof of Theorem 1.5

Let A = (A1, . . . , Ar) ∈ Or(Kd) and suppose that A satisfies the unbounded
agreements property. Without loss of generality we normalise A so as to obtain
%(A) = 1. Let ‖ · ‖B1 and ‖ · ‖B2 be Barabanov norms for A which are not
proportional to each other. Note that the existence of a Barabanov norm implies
that A is product bounded. We will establish Theorem 1.5 by showing that
under these hypotheses the rank one property cannot hold.

Rescaling one of the two norms if necessary, there exists a real number λ > 1
such that

sup{‖v‖B1 : ‖v‖B2 = 1} = sup{‖v‖B2 : ‖v‖B1 = 1} = λ.

Let us define subsets X1, X2 of Kd by

X1 =
{
v ∈ Kd : ‖v‖B1 = λ‖v‖B2 = λ

}
,

X2 =
{
v ∈ Kd : ‖v‖B2 = λ‖v‖B1 = λ

}
.

Clearly X1 and X2 are nonempty and compact, and satisfy X1 ∩X2 = ∅. Note
also that if v1 ∈ X1 and v2 ∈ X2 then v1 and v2 are linearly independent.

To begin the proof we show that there exist sequences i1, i2 : N→ {1, . . . , r}
and vectors u1 ∈ X1 and u2 ∈ X2 such that for every natural number n we have
Aim(n) · · ·Aim(1)um ∈ Xm for m = 1, 2. Let u1 and u2 be arbitrary elements
of X1 and X2 respectively. Since ‖ · ‖B1 is a Barabanov norm there exists
i1(1) ∈ {1, . . . , r} such that ‖Ai1(1)v1‖B1 = ‖v1‖B1 = λ and consequently

‖Ai1(1)v1‖B1 = λ‖v1‖B2 = λ max
1≤j≤r

‖Ajv1‖B2 ≥ λ‖Ai1(1)v1‖B2 ≥ ‖Ai1(1)v1‖B1

which implies that Ai1(1)u1 ∈ X1. Applying this procedure with the vec-
tor Ai1(1)u1 in place of u1 allows us to define i1(2) with the property that
Ai1(2)Ai1(1)u1 ∈ X1. Proceeding inductively in this manner we may thus con-
struct the sequence i1. The construction of the sequence i2 may be undertaken
in precisely the same fashion.

We next claim that for every ` ∈ N there exist a function j` : {1, . . . , `} →
{1, . . . , r} and two vectors v`,1 ∈ X1, v`,2 ∈ X2 such that for 1 ≤ k ≤ ` and
m = 1, 2 one has Aj`(k) · · ·Aj`(1)v`,m ∈ Xm. To see this, let i1, i2 and u1, u2 be

11



the sequences and vectors defined above. Since
∥∥Aim(n) · · ·Aim(1)um

∥∥
Bm

= λ
for each n ∈ N and for m = 1, 2, we conclude that neither of the two sequences of
matrices (Aim(n) · · ·Aim(1))∞n=1 converges to zero in the limit n→∞. Let ` ∈ N.
By the unbounded agreements property it follows that there exist n1, n2 ∈ N
such that i1(n1 + k) = i2(n2 + k) throughout the range 1 ≤ k ≤ `. Taking
j`(k) := i1(n1 + k) for 1 ≤ k ≤ ` and setting v`,m = Aim(nm) · · ·Aim(1)um ∈ Xm

for m = 1, 2 proves the claim.
We may now complete the proof. For each ` ∈ N and m = 1, 2 we have∥∥Aj`(`) · · ·Aj`(1)v`,m

∥∥
Bm

= ‖v`,m‖Bm and therefore
∥∥Aj`(`) · · ·Aj`(1)

∥∥
Bm

= 1.
It follows that we may choose a subsequence (`n)∞n=1 such that the sequence of
matrices (Bn)∞n=1 given by Bn := Aj`n (`n) · · ·Aj`n (1) converges to a nonzero
matrix B ∈ Matd(K). By definition we have B ∈ S(A). Since each Xm

is compact, by taking further subsequences if necessary we may assume that
limn→∞ v`n,m = vm ∈ Xm for m = 1, 2. For each n ∈ N and m = 1, 2 we
have Bnv`n,m ∈ Xm, and it follows from this that Bv1 ∈ X1, Bv2 ∈ X2. But
this implies that Bv1 and Bv2 are linearly independent, and we have obtained
B ∈ S(A) with rankB ≥ 2. Thus A lacks the rank one property and the proof
is complete.

4 Connections with ergodic theory

The proof of Theorem 1.5 is suggested by a lemma of T. Bousch in ergodic theory
[6, Lemme C], which we shall briefly describe. Define a map T : R/Z→ R/Z by
T (x) = 2x( mod 1) and let f : R/Z → R be Lipschitz continuous. If we then
define

β(f) = inf
n∈N

sup
x∈R/Z

1
n

n−1∑
j=0

f(T jx),

then Bousch’s Lemme C gives criteria under which the functional equation

β(f) + g(x) = max
T (y)=x

[f(y) + g(y)] (6)

admits at most one continuous solution g up to the addition of a real constant.
The similarity between the functional equations (1) and (6) was previously re-
marked on by Bousch in the manuscript [7]. When more than one solution to (6)
exists, moreover, the set of all sufficiently regular solutions is an equicontinuous
family [10, Lemma 7.6], a result suggestive of [30, Theorem 4.1].

The idea of Theorem 1.1 was suggested to the author by a theorem of Con-
treras, Lopes and Thieullen which is closely related to the work of Bousch de-
scribed above [9, Theorem 8]. However, the proof of Theorem 1.1 in its final
form has no direct connection with the argument in [9]. Connections between
the joint spectral radius and optimisation problems in ergodic theory are also
investigated by the author in [26, 25].
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