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Abstract. We use ergodic theory to prove a quantitative version of a theorem

of M. A. Berger and Y. Wang, which relates the joint spectral radius of a
set of matrices to the spectral radii of finite products of those matrices. The

proof rests on a structure theorem for continuous matrix cocycles over minimal

homeomorphisms having the property that all forward products are uniformly
bounded. MSC primary 15A18, 37H15, 65F15, secondary 37M25.

1. Introduction

Let A be a bounded nonempty set of d× d complex matrices. The joint spectral
radius of A, introduced by G.-C. Rota and G. Strang in [44], is defined to be the
quantity

(1) %(A) := lim
n→∞

sup
{
‖An · · ·A1‖1/n : Ai ∈ A

}
,

where ‖ ·‖ denotes any norm on Cd. This limit exists (by a simple subadditivity ar-
gument described below) and yields a finite value which is independent of the choice
of norm. The joint spectral radius arises naturally in a range of topics including
control and stability [2, 26, 32], coding theory [38], wavelet regularity [16, 17, 37],
numerical solutions to ordinary differential equations [25], and combinatorics [18].
The problem of computing the joint spectral radius of a finite set of matrices has
therefore attracted substantial research interest [5, 23, 24, 32, 35, 36, 42, 47, 48]. In
this article we shall prove a new estimate relevant to the computation of the joint
spectral radius.

Let Matd(C) denote the set of all d×d complex matrices. The following theorem
was proved by M. A. Berger and Y. Wang [4], having originally been conjectured
by I. Daubechies and J. C. Lagarias [16]:

Theorem 1.1 (Berger-Wang formula). Let A ⊂ Matd(C) be a bounded nonempty
set. Then

(2) %(A) = lim sup
n→∞

sup
{
ρ(An · · ·A1)1/n : Ai ∈ A

}
,

where ρ(A) denotes the ordinary spectral radius of a matrix A.

Some alternative proofs are given in [7, 19, 46]. In this article we shall study the
rate of convergence in the expression (2). This has potential implications for some
approaches to the computation of the joint spectral radius such as the algorithm
given by G. Gripenberg [23].
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Let ‖ · ‖ be any norm on Cd. For each n ∈ N+ define

%+
n (A, ‖ · ‖) = sup

{
‖An · · ·A1‖1/n : Ai ∈ A

}
,

%−n (A) = sup
{
ρ(An · · ·A1)1/n : Ai ∈ A

}
.

For fixed A it is clear that %+
n+m(A, ‖ · ‖)n+m ≤ %+

n (A, ‖ · ‖)n%+
m(A, ‖ · ‖)m for all

n,m ∈ N+, which implies via Fekete’s subadditivity lemma that the limit in (1)
exists and is equal to the infimum over all n ∈ N+ of the same quantity. Conversely,
since ρ(Am)1/m = ρ(A) for all m ∈ N+ and any matrix A, one may easily show that
%−nm(A) ≥ %−n (A) for every n,m ∈ N+ and hence the limit superior in (2) is also a
supremum. In general this limit superior can fail to be a limit: G. Gripenberg [23]
notes the example

A =
{(

0 1
0 0

)
,

(
0 0
1 0

)}
for which it is easily seen that %−n (A) is equal to 0 or 1 according as n is odd or
even. In this article we shall present a proof of the following theorem, which extends
Theorem 1.1 in the case where A is finite:

Theorem 1.2. Let A be a nonempty finite set of d×d complex matrices. Then for
every positive real number r,

%(A)− max
1≤k≤n

%−k (A) = O

(
1
nr

)
.

Theorem 1.2 implies in particular that if we wish to compute %(A) to within ac-
curacy ε by means of brute-force estimation of the values %−n (A), then the number
of matrix products which must be evaluated increases at a slower-than-stretched-
exponential rate as a function of 1/ε. However, it should be noted that the ar-
guments used in this paper do not seem to be well-suited to the production of an
effective estimate for the quantity %(A).

Two estimates related to Theorem 1.2 have been established previously. By a
theorem of J. Bochi [7], there exist for each d ∈ N+ a constant Cd ≥ 1 and an integer
m ∈ N+ such that %(A) ≤ Cd max1≤k≤m %

−
k (A) for every nonempty bounded set

A ⊂ Matd(C). An easy consequence is the estimate

0 ≤ %(A)− max
1≤k≤mn

%−k (A) ≤
(

1− C−1/n
d

)
%(A) = O

(
1
n

)
.

In the other direction, F. Wirth [48] gives the bound

%+
n (A, ‖ · ‖)− %(A) = O

(
1
n

)
for any norm ‖ · ‖ on Cd and nonempty bounded set A ⊂ Matd(C), provided that
there does not exist a linear space V such that {0} ⊂ V ⊂ Cd and AV ⊆ V for every
A ∈ A. When such a subspace V exists this estimate is weakened to O(log n/n).
Unlike Bochi’s estimate, the constant in Wirth’s estimate may vary between sets
of matrices A. The example

A =
{(

2 2
0 0

)
,

(
1 1
1 1

)}
shows that Wirth’s estimate is sharp at least for certain choices of norm: taking
‖ · ‖ to be the Euclidean norm we obtain %+

n (A, ‖ · ‖) = 21+1/2n for each n ∈ N+,
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whereas %−1 (A) = 2 and hence %(A) = 2. Remarkably, for certain A it is possible
to choose a norm ||| · ||| such that %+

n (A, ||| · |||) = %(A)n for every n ∈ N+, but giving
an explicit description of such a norm (when it exists) is a separate computational
problem which does not appear to be easier than that of calculating %(A) in the
first place. A discussion of this topic may be found in [33].

The proof of Theorem 1.2 has some points of resemblance to the proof of Theorem
1.1 given by L. Elsner [19] in the case in which A is finite, which we now elaborate
upon. Elsner’s proof runs essentially as follows. If %(A) = 0 then the result is
trivially true. Otherwise, by normalising we may take %(A) = 1. We then reduce
to the case where a uniform bound exists for products of elements of A, and hence
there exists a compact subset of Matd(C) which contains {An . . . A1 : Ai ∈ A} for
every n. By using the pigeonhole principle on open ε-balls in Matd(C) and in Cd,
we can then guarantee the existence of a finite sequence A1, . . . , An and a vector v
belonging to the unit sphere of Cd such that An · · ·A1v is close to v and therefore
the spectral radius of An · · ·A1 is close to 1.

In our proof of Theorem 1.2 we make this strategy quantitative, replacing the
pigeonhole principle with a more delicate recurrence argument. In order to achieve
this we first prove a theorem describing the dynamical structure of matrix sequences
(Ai) with the property that ‖An · · ·A1‖ is large for all n, and additionally we achieve
some understanding of the structure of the orbits in Cd which are induced by the
action of such sequences. The bulk of this paper, therefore, is concerned with
proving a theorem on the dynamical structure of these ‘extremal’ sequences. We
describe these ideas in detail in the following section.

2. Linear cocycles

At this point it is convenient to establish some notation and definitions. In the
remainder of this article the symbol ‖·‖ shall be used to denote the Euclidean norm
on Cd, whereas the symbol ||| · ||| shall be used to denote an extremal norm on Cd,
which will be defined shortly. In either case we shall also use the symbols ‖ · ‖ and
||| · ||| to denote the corresponding operator norms induced on Matd(C). Throughout
this article we adhere to the convention log 0 := −∞.

Let T : X → X be a continuous transformation of a nonempty compact topo-
logical space. A cocycle over T with values in the complex matrices is a function
A : X × N→ Matd(C) such that for each x ∈ X and n,m ∈ N

A(x, n+m) = A(Tnx,m)A(x, n),

A(x, 0) = I.

We say that the cocycle A is continuous if A(·, n) is a continuous function from
X to Matd(C) for each n ∈ N. Abusing notation somewhat, we shall sometimes
denote A(x, 1) simply by A(x). Since for each x, n

A(x, n) = A(Tn−1x) · · · A(Tx)A(x)

the cocycle A : X×N→ Matd(C) is completely determined by the function A : X →
Matd(C). Whilst it will always be the case in this article that the map T is a
homeomorphism, we do not assume that the values of the function A are always
invertible matrices, so in general A will not admit an extension to a cocycle with
domain X × Z.

For 0 ≤ p ≤ d we let Gr(p, d) denote the set of all p-dimensional subspaces of Cd.
For V ∈ Gr(p, d) we let P⊥V denote the linear map given by orthogonal projection
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onto V , and for u ∈ Cd we shall write d(u, V ) := inf{‖u − v‖ : v ∈ V }. We equip
Gr(p, d) with the metric given by

(3) dGr(V,W ) := ‖P⊥V − P⊥W ‖ = max

 sup
v∈V
‖v‖=1

d(v,W ), sup
w∈W
‖w‖=1

d(w, V )


with respect to which Gr(p.d) is a compact metric space. A proof of the equality of
the two expressions for dGr(V,W ) given above may be found in [1]. We shall say that
a function V : X → Gr(p, d) is invariant under a cocycle A if A(x)V(x) ⊆ V(Tx)
for all x ∈ X, in which case A(x, n)V(x) ⊆ V(Tnx) for every x ∈ X and n ∈ N.

We begin by establishing the following general theorem which will later be ap-
plied to study matrix cocycles associated to nonempty compact sets A ⊂ Matd(C).

Theorem 2.1. Let T : X → X be a minimal homeomorphism of a nonempty com-
pact topological space, and let A : X×N→ Matd(C) be a continuous linear cocycle.
Suppose that there exists M ≥ 1 such that ‖A(x, n)‖ ≤ M for all x ∈ X and all
n ∈ N. Then there exist an integer 0 ≤ p ≤ d and continuous invariant func-
tions V : X → Gr(p, d), W : X → Gr(d− p, d) such that V(x)⊕W(x) = Cd for all
x ∈ X, and the following additional properties hold. There exist constants C > 1
and δ, ξ ∈ (0, 1) such that for all x ∈ X and n ∈ N, ‖A(x, n)v‖ ≥ δ‖v‖ for every
v ∈ V(x) and ‖A(x, n)w‖ ≤ Cξn‖w‖ for every w ∈ W(x). The continuity of the
functions V and W admits the following quantitative description: there exists a
constant K1 > 1 such that for any x, y ∈ X and n ∈ N,

dGr(V(x),V(y)) ≤ K1

(
ξn + ‖A(T−nx, n)−A(T−ny, n)‖

)
and

dGr(W(x),W(y)) ≤ K1 (ξn + ‖A(x, n)−A(y, n)‖) .
For each x ∈ X let P (x) ∈ Matd(C) denote the unique projection with image

V(x) and kernel W(x). Then P (x) depends continuously on x, and in particular
there exists K2 > 1 such that

‖P (x)− P (y)‖ ≤ K2

[
dGr(V(x),V(y)) + dGr(W(x),W(y))

]
for all x, y ∈ X.

While Theorem 2.1 has a number of features in common with the classical mul-
tiplicative ergodic theorem of V. I. Oseledec (see e.g. [34]) our proof is direct and
does not make use of any prior multiplicative ergodic theorems. Indeed, since in
general we wish to work with non-invertible matrices, the standard statement of
Oseledec’s theorem does not give the existence even of a measurable splitting of
the type given above, giving only an invariant flag (though see [20]). The proof
of Theorem 2.1 does however incorporate ideas used in the proofs of Oseledec’s
theorem given by M. S. Raghunathan [43] and D. Ruelle [45]. For some previous
results on the continuity of invariant splittings see [3, Appendix A] and [50].

In order to apply Theorem 2.1 to the study of the joint spectral radius we require
some further definitions. We shall say that A ⊂ Matd(C) is product bounded if there
exists M > 1 such that for every n ∈ N+ we have ‖An · · ·A1‖ ≤M for every finite
sequence (An, . . . , A1) ∈ An. Note if such a uniform bound holds for A with respect
to some norm on Cd then it holds with respect to all such norms, subject to variation
in the constant M . We shall say that a norm ||| · ||| on Cd is an extremal norm for A
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if |||A||| ≤ %(A) for all A ∈ A. If %(A) > 0 then an extremal norm exists for A if and
only if %(A)−1A is product bounded [32, 44].

Given a nonempty compact set A ⊂ Matd(C), let us define a metric on AZ by

d [(Ai)i∈Z, (Bi)i∈Z] :=
∑
i∈Z

‖Ai −Bi‖
2|i|

.

If A is compact then (AZ, d) is compact. We define the shift map T : AZ → AZ

by T [(Ai)i∈Z] = (Ai+1)i∈Z. The shift map is a Lipschitz homeomorphism of
AZ. Let A : AZ → Matd(C) be given by A[(Ai)i∈Z] = A0, and let A(x, n) =
A(Tn−1x) · · · A(x) for all (x, n) ∈ AZ × N so that A : AZ × N→ Matd(C) is a con-
tinuous cocycle. The cocycle A gives us a framework with which to study Theorem
1.2 using the tools of multiplicative ergodic theory: for each n ∈ N+ we have

%+
n (A, ‖ · ‖) = sup

{
‖A(x, n)‖1/n : x ∈ AZ

}
and

%−n (A) = sup
{
ρ(A(x, n))1/n : x ∈ AZ

}
.

It follows in particular that the joint spectral radius of A admits the description

(4) log %(A) = lim
n→∞

sup
x∈AZ

1
n

log ‖A(x, n)‖.

By applying Theorem 2.1 in this context we will derive the following:

Theorem 2.2. Let A ⊂ Matd(C) be a nonempty compact set such that %(A) = 1,
and suppose that A is product bounded. Let ||| · ||| be any extremal norm for A and
define

Y :=
{
x ∈ AZ : |||A(x, n)||| = 1 ∀ n ∈ N

}
.

Then the set Y is a compact, nonempty subset of AZ such that TY ⊆ Y .
Let Z ⊆ Y be any nonempty T -invariant subset such that T : Z → Z is minimal.

Then there exists an integer 1 ≤ p ≤ d such that the following properties hold. There
exist Hölder continuous invariant functions V : Z → Gr(p, d), W : Z → Gr(d−p, d)
such that V(x) ⊕ W(x) = Cd for each x ∈ Z. There exist constants C > 1,
ξ ∈ (0, 1) such that for all x ∈ Z and n ∈ N, |||A(x, n)v||| = |||v||| for all v ∈ V(x)
and |||A(x, n)w||| ≤ Cξn|||w||| for all w ∈ W(x). If for each x ∈ Z we let P (x) denote
the projection with image V(x) and kernel W(x) then P : Z → Matd(C) is Hölder
continuous.

To obtain Theorem 1.2 we combine this result with an estimate due to X. Bres-
saud and A. Quas on the approximation via periodic orbits of closed invariant
subsets of shift transformations over finite alphabets (cf. [12]).

We remark that the recently-developed research topic of ergodic optimisation has
been quite influential on the development of the present article (although the only
result in that field which we use directly is that of Bressaud and Quas). Ergodic
optimisation is concerned with the following problem: given a continuous dynamical
system T : X → X defined on a compact metric space, and a continuous (or only
upper semi-continuous) function f : X → R, one studies the greatest possible linear
growth rate of the sequence

∑n−1
j=0 f(T jx) as x varies over X, which is equal to the

supremum of all possible values of the integral of f with respect to a T -invariant
probability measure on X. Problems which are considered include the identification
and approximation of this maximal growth rate and of those orbits which attain
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it. Some recent research articles in this area include [8, 9, 11, 12, 14, 29, 40, 51].
The expression (4) shows that the joint spectral radius of a set of matrices A can
be interpreted as the maximal linear growth rate of a sequence of observations of
a dynamical system in a somewhat related manner. A characterisation of %(A) in
terms of integrals with respect to the ergodic measures of the system (AZ, T ) is
described in the article [41], although we do not make use of it here.

An ergodic optimisation approach to the study of the joint spectral radius was
previously explored by T. Bousch and J. Mairesse in the article [10]. Indeed, the
possibility of applying ergodic optimisation to the joint spectral radius was sug-
gested at an early stage in the unpublished manuscript [15]. However, to the best
of the author’s knowledge, the article of Bousch and Mairesse is the only article
prior to the present work in which ergodic methods have been applied to study the
joint spectral radius.

The remainder of this article is structured as follows. In sections 3, 4 and 5
we respectively give the proofs of Theorem 2.1, Theorem 2.2 and Theorem 1.2. In
section 6 we describe the obstructions to improving the error term in Theorem 1.2
and to extending that theorem to the case of infinite compact sets A.

3. Proof of Theorem 2.1

Throughout this section we assume that X, T , A, M etc. are as given in the
statement of Theorem 2.1. Before commencing the proof proper we require two
preliminary results. The first is of a dynamical nature, whereas the second is
concerned with the metric structure of the Grassmannian spaces Gr(p, d).

Recall that a sequence (an)∞n=1 of elements of R ∪ {−∞} is called subadditive if
an+m ≤ an + am for every n,m ∈ N+. If (an) is subadditive then

lim
n→∞

an
n

= inf
n∈N+

an
n
∈ R ∪ {−∞}.

For the purposes of this section, we define a subadditive function sequence to be a
sequence (fn)∞n=1 of upper semi-continuous functions from X to R ∪ {−∞} such
that the relation

fn+m(x) ≤ fm(Tnx) + fn(x)
is satisfied for every x ∈ X and n,m ∈ N+. Proposition 3.1, which deals with subad-
ditive function sequences, is key to our application of the hypothesis ‖A(x, n)‖ ≤M .
Some features of this proposition are similar to [39, Theorem 1].

Proposition 3.1. Let (fn) be a subadditive function sequence, and suppose that
C := supx,n fn(x) is finite. Then one of the following two cases holds: either
|fn(x)| ≤ C for every x ∈ X and n ∈ N+, or limn→∞

1
n supx∈X fn(x) < 0.

Proof. The sequence (an)∞n=1 defined by an = supx fn(x) is subadditive, and there-
fore limn→∞ an/n = infn∈N+ an/n ∈ R ∪ {−∞}. Let us suppose that the first of
the two cases described above does not hold; to prove that the second case holds it
suffices to exhibit N ∈ N+ such that aN < 0.

Choose z ∈ X and m, ε > 0 such that fm(z) < −(C + ε). By semi-continuity
there exists an open set U containing z such that fm(x) < −(C + ε) for every
x ∈ U . Since T is minimal, there exists p ∈ N+ such that X =

⋃p−1
i=0 T

−iU (see for
example [21, p.28]). It follows that for every x ∈ X we may find an integer r(x)
such that fr(x)(x) < −ε and m ≤ r(x) < m+ p, since necessarily T ix ∈ U for some
i ∈ {0, . . . , p − 1} and therefore fm+i(x) ≤ fm(T ix) + fi(x) < −(C + ε) + C =



LOWER BOUND FOR THE JOINT SPECTRAL RADIUS 7

−ε. Let us define R(x, 1) = r(x) for each x ∈ X, and define R(·, k) : X → N+

inductively by R(x, k + 1) := R(x, k) + r(TR(x,k)) for each k ≥ 1. Clearly for each
x ∈ X and k ≥ 1 we have m ≤ R(x, k + 1) − R(x, k) < m + p and therefore
R(x, k) < k(m+p), and a simple induction argument shows that fR(x,k)(x) < −kε.
Let N := (m+ p)dCε−1 + 2e. For each x ∈ X we may choose an integer k(x) with
the property that 0 < N − R(x, k(x)) ≤ m + p, which in particular implies that
k(x)(m + p) > R(x, k(x)) ≥ N − m − p and therefore k(x) ≥ N(m + p)−1 − 1.
Define also q(x) := N −R(x, k(x)). For each x ∈ X we may now estimate

fN (x) ≤ fq(x)(TR(x,k(x))x)+fR(x,k(x))(x) < C−k(x)ε ≤ C+ε−Nε(m+p)−1 ≤ −ε.
In particular aN < 0 and the second case of the proposition has been established.

�

The following useful result concerning the metric dGr does not appear to be
widely known:

Lemma 3.2. Let V,W ∈ Gr(p, d) where 1 ≤ p ≤ d. Then,

dGr(V,W ) = sup
v∈V
‖v‖=1

d(v,W ) = sup
w∈W
‖w‖=1

d(w, V ).

Proof. For conciseness let us define ∂(V,W ) := sup{d(v,W ) : v ∈ V ; ‖v‖ = 1}, and
define ∂(W,V ) analogously by interchanging V and W . For every V,W ∈ Gr(p, d)
we have max{∂(V,W ), ∂(W,V )} = dGr(V,W ) ≤ 1, see for example [1, §34] or [31,
p.56]. If min{∂(V,W ), ∂(W,V )} = 1 then we are done. If this is not the case then
by symmetry we may suppose without loss of generality that ∂(V,W ) < 1. Since

‖(I − P⊥W )P⊥V ‖ = sup
v∈Cd

‖v‖=1

d(Pv,W ) = sup
v∈V
‖v‖=1

d(v,W ) = ∂(V,W )

and V is by hypothesis isomorphic to W , Theorem I.6.34 in Kato’s book [31] shows
that ∂(V,W ) = ∂(W,V ) as desired. �

Remark. The reader may note that the hypothesis in Lemma 3.2 that V and
W have equal, finite dimension plays a crucial rôle: for example, if V and W are
subspaces of Cd of unequal dimension such that V is properly contained in W , then
it is not difficult to show that d(v,W ) = 0 for all v ∈ V whilst max{d(w, V ) : w ∈
W ; ‖w‖ = 1} = 1 (see e.g. [1, p.70]). Similarly, it is not difficult to see that if V
and W are closed subspaces of an infinite-dimensional Hilbert space, then the same
outcome may arise even if V and W are isomorphic.

Before proceeding further with the proof of Theorem 2.1 we require some notation
and definitions from linear algebra. For each B ∈ Matd(C) let us write |B| :=√
B∗B, and for 1 ≤ i ≤ d let σ1(B) ≥ . . . ≥ σd(B) denote the singular values

of B, which are defined to be the eigenvalues of |B| listed in decreasing order,
allowing repetitions if multiplicities occur. Clearly 0 ≤ σi(B) ≤ ‖B‖ for every i.
The values σi(B) depend continuously on B ∈ Matd(C), and if A,B ∈ Matd(C)
then for 1 ≤ ` ≤ d,

(5)
∏̀
i=1

σi(AB) ≤

(∏̀
i=1

σi(A)

)(∏̀
i=1

σi(B)

)
.

This property follows naturally from the fact that σ1(B)σ2(B) · · ·σ`(B) is the oper-
ator norm of ∧`B relative to the Hermitian norm on ∧`(Cd) induced by the standard
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Hermitian form on Cd; see Ruelle [45, p.43]. An alternative proof which does not
make use of multilinear algebra may be found in [22].

For each x ∈ X, n ∈ N+ and 1 ≤ ` ≤ d let us define f `n(x) =
∑`
i=1 log σi(A(x, n)).

It follows from (5) that for each `, (f `n) is a subadditive function sequence. More-
over, since for all x ∈ X, n ∈ N+ and 1 < ` ≤ d we have

(6)
∑̀
i=1

log σi(A(x, n)) ≤
`−1∑
i=1

log σi(A(x, n)) + logM ≤ ` logM,

Proposition 3.1 implies that each of the limits

θ` := lim
n→∞

sup
x∈X

1
n

∑̀
i=1

log σi(A(x, n))

exists. Clearly (6) also implies that θ`+1 ≤ θ` ≤ 0 for 1 ≤ ` < d. If θ1 < 0 then the
conclusions of Theorem 2.1 hold with p = 0, V(x) ≡ {0},W(x) ≡ Cd and ξ := e

1
2 θ1 ,

so for the remainder of the proof we shall assume that θ1 = 0. Take p ∈ N+ such
that θ` = 0 for 1 ≤ ` ≤ p and θ` < 0 for p < ` ≤ d. By Proposition 3.1, for ` in the
range 1 ≤ ` ≤ p we have

sup
n∈N+

sup
x∈X

∣∣∣∣∣∑̀
i=1

log σi(A(x, n))

∣∣∣∣∣ ≤ ` logM.

We deduce from this that there is δ0 ∈ (0, 1) such that

(7) min
1≤i≤p

inf
x∈X

inf
n≥1

σi(A(x, n)) ≥ δ0.

Since θi < 0 for p < i ≤ d we similarly deduce that there exist C0 > 1, ξ ∈ (0, 1)
such that for each n ∈ N

(8) max
p<i≤d

sup
x∈X

σi(A(x, n)) ≤ C0ξ
n.

Given x ∈ X and n ∈ N+, let U+
n (x) ∈ Gr(p, d) be the vector space spanned

by those eigenvectors of |A(x, n)| which correspond to the eigenvalues σ1(A(x, n))
up to σp(A(x, n)) and let U−n (x) ∈ Gr(d − p, d) be the space spanned by those
eigenvectors associated to the remaining eigenspaces. If v is an eigenvector of
|A(x, n)| with eigenvalue σi(A(x, n)) then
(9)
‖A(x, n)v‖2 = 〈A(x, n)v,A(x, n)v〉 = 〈A(x, n)∗A(x, n)v, v〉 = σi(A(x, n))2‖v‖2.

Since |A(x, n)| is a normal matrix there exists an orthonormal basis for Cd consisting
of its eigenvectors. In particular U+

n (x) is orthogonal to U−n (x), and using (9) we
may derive

inf
{
‖A(x, n)v‖ : v ∈ U+

n (x) and ‖v‖ = 1
}
≥ δ0,

sup
{
‖A(x, n)v‖ : v ∈ U−n (x) and ‖v‖ = 1

}
≤ C0ξ

n

for all x ∈ X and n ∈ N+.
We now proceed to construct the function W. Let x ∈ X, m ∈ N+ and u ∈ Cd.

Writing u = u+
m + u−m with u+

m ∈ U+
m(x) and u−m ∈ U−m(x), we have

‖A(x,m)u‖ ≥ ‖A(x,m)u+
m‖ − ‖A(x,m)u−m‖(10)

≥ δ0‖u+
m‖ − C0ξ

m‖u−m‖ ≥ δ0.d(u, U−m(x))− C0ξ
m‖u‖
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since ‖u+
m‖ = d(u, U−m(x)) and ‖u−m‖ ≤ ‖u‖. Now, if m ≥ n ≥ 1 then we have

‖A(x,m)v‖ = ‖A(Tnx,m− n)A(x, n)‖ ≤M‖A(x, n)‖
and so we obtain

(11) δ0.d(u, U−m(x)) ≤ C0ξ
m +M‖A(x, n)u‖

whenever x ∈ X, u ∈ Cd and m ≥ n ≥ 1. Using Lemma 3.2 we may choose
u ∈ U−n (x) such that d(u, U−m(x)) = dGr(U−n (x), U−m(x)) and in this case (11) yields:

(12) δ0dGr(U−n (x), U−m(x)) = δ0.d(u, U−m(x)) ≤ C0ξ
m + C0Mξn ≤ C0(M + 1)ξn.

We deduce that for each x ∈ X the sequence of subspaces U−n (x) is a Cauchy
sequence in Gr(d − p, d). Let us define W : X → Gr(d − p, d) by setting W(x) :=
limn→∞ U−n (x). Since this convergence is uniform and the spaces U±n (x) depend
continuously on x, the continuity of W follows.

We next derive two key inequalities describing the action of A(x, n) on W(x)
and on Cd. Firstly we assert that given any x ∈ X, n ∈ N and w ∈ W(x),

(13) ‖A(x, n)w‖ ≤ Cξn‖w‖
for some constant C > 1 as described in the statement of the theorem. For n = 0
this is clear. Given x ∈ X and n ∈ N+, note that dGr(W(x), U−n (x)) ≤ δ−1

0 C0Mξn

by taking the limit m→∞ in (12). Writing w ∈ W(x) in the form w = w+
n + w−n

with w±n ∈ U±n (x) and applying Lemma 3.2, we obtain

‖w+
n ‖ = d(w,U−n (x)) ≤ ‖w‖.dGr(W(x), U−n (x)) ≤ δ−1

0 C0Mξn‖w‖
and therefore

‖A(x, n)w‖ ≤ ‖A(x, n)w+
n ‖+ ‖A(x, n)w−n ‖

≤ δ−1
0 C0M

2ξn‖w‖+ C0ξ
n‖w‖ ≤ Cξn‖w‖

as required, where C := C0(δ−1
0 M2 + 1) > 1. Secondly we make the following

observation: if x ∈ X, n ∈ N and u ∈ Cd, then

(14) ‖A(x, n)u‖ ≥ δ1.d(u,W(x))

where δ1 ∈ (0, 1) is constant. Indeed, the case n = 0 being trivial, this follows
simply by taking the limit m→∞ in (11) and defining δ1 := M−1δ0 ∈ (0, 1).

The invariance ofW under A now follows easily. Given w ∈ W(x) we must show
that d(A(x)w,W(Tx)) = 0. Let n ∈ N+ be arbitrary; combining (13) and (14)
yields

δ1.d(A(x)w,W(Tx)) ≤ ‖A(Tx, n)A(x)w‖ = ‖A(x, n+ 1)w‖ ≤ Cξn+1‖w‖,
and since n may be taken arbitrarily large this implies the desired result. The
continuity estimate for W is also simple to establish: given x, y ∈ X and n ∈ N,
applying Lemma 3.2 we may choose w ∈ W(x) such that dGr(W(x),W(y)) =
d(w,W(y)) and ‖w‖ = 1. Via (13) and (14) this entails

δ1.dGr(W(x),W(y)) ≤ ‖A(y, n)w‖ ≤ ‖A(x, n)w‖+ ‖(A(x, n)−A(y, n))w‖
≤ Cξn + ‖A(x, n)−A(y, n)‖

so that we may take K1 := δ−1
1 C > 1.

We next turn to the construction of V. To achieve this we make the follow-
ing observations: since A is a cocycle with respect to the transformation T , it
follows directly that the function A∗ : X × N → Matd(C) defined by A∗(x, n) :=
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[A(T−nx, n)]∗ is a cocycle with respect to the transformation T−1, which of course
is also minimal. Moreover, since the singular values of a matrix are equal to the
singular values of its conjugate transpose, the inequalities (7) and (8) must also
apply to the cocycle A∗ with identical constants C0, δ0, ξ and p. By repeating the
construction of W given above for the cocycle A∗, it follows that there exists a
continuous function Y : X → Gr(d − p, d), invariant under A∗, with the following
properties: given x, y ∈ X, n ∈ N and v ∈ Y(x),

(15) ‖A∗(x, n)v‖ ≤ Cξn‖v‖
and

(16) dGr(Y(x),Y(y)) ≤ K1(ξn + ‖A∗(x, n)−A∗(y, n)‖).
Now, if U, V are linear subspaces of Cd, and B ∈ Matd(C), then BU ⊆ V if and

only if B∗V ⊥ ⊆ U⊥, since both properties are equivalent to the statement that
〈Bu, v〉 = 0 whenever u ∈ U and v ∈ V ⊥. Let us therefore define V : X → Gr(p, d)
by V(x) := Y(x)⊥ for all x ∈ X. The invariance relation A∗(x)Y(x) ⊆ Y(T−1x)
now yields A(T−1x)V(T−1x) ⊆ V(x) and hence V is invariant under the cocycle A.
Moreover using (16) it is clear that V must satisfy the continuity estimate

dGr(V(x),V(y)) ≤ K1(ξn + ‖A(T−nx, n)−A(T−ny, n)‖)
required for Theorem 2.1.

We shall find it useful to have an alternative characterisation of V. For x ∈ X
and n ∈ N define Un(x) := A(T−nx, n)

[
W(T−nx)⊥

]
. We claim that V(x) =

limn→∞ Un(x) for each x ∈ X. Indeed, given x and n, applying Lemma 3.2 we may
choose u ∈ Un(x) such that dGr(Un(x),V(x)) = d(u,V(x)) and ‖u‖ = 1. Let us
write u = A(T−nx, n)v where v ∈ W(T−nx)⊥. By (14) we have δ1‖v‖ ≤ ‖u‖ = 1,
and making use of (15) we obtain

dGr(Un(x),V(x)) = d(u,Y(x)⊥) = sup
w∈Y(x)
‖w‖=1

〈w, u〉 = sup
w∈Y(x)
‖w‖=1

〈
w,A(T−nx, n)v

〉
= sup
w∈Y(x)
‖w‖=1

〈A∗(x, n)w, v〉 ≤ sup
w∈Y(x)
‖w‖=1

‖A∗(x, n)w‖.‖v‖ ≤ δ−1
1 Cξn,

which suffices to prove the claim.
Now, given x ∈ X suppose that u ∈ Un(x) for some n ∈ N, and let u =

A(T−nx, n)v with v ∈ W(T−nx)⊥. Writing u = w1 + w2 with w1 ∈ W(x) and
w2 ∈ W(x)⊥, and applying (13), we obtain

‖A(x,m)u‖ ≤ ‖A(x,m)w1‖+ ‖A(x,m)w2‖
≤ Cξm‖w1‖+M‖w2‖ ≤ Cξm‖u‖+M.d(u,W(x))

for all m ∈ N. On the other hand, from (14) we arrive at the inequality

‖A(x,m)u‖ = ‖A(x,m)A(T−nx, n)v‖ = ‖A(T−nx, n+m)v‖ ≥ δ1‖v‖ ≥ δ1M−1‖u‖
since v ∈ W(T−nx)⊥ and ‖u‖ = ‖A(T−nx, n)v‖ ≤ M‖v‖. Combining the above
inequalities yields

δ1M
−1‖u‖ ≤ Cξm‖u‖+Md(u,W(x))

whenever u ∈
⋃∞
n=0 Un(x) and m ∈ N. Since V(x) = limn→∞ Un(x) and m may be

taken arbitrarily large, we deduce that for every v ∈ V(x)

(17) d(v,W(x)) ≥ δ1M−2‖v‖.
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Combining this inequality with (14) it follows that for x ∈ X, n ∈ N and v ∈ V(x)
we have ‖A(x, n)v‖ ≥ δ‖v‖ as required for Theorem 2.1, where δ := δ21M

−2 ∈ (0, 1).
The inequality (17) also shows that for every x ∈ X we have V(x) ∩W(x) = {0}
and therefore V(x)⊕W(x) = Cd as required.

For each x ∈ X let P (x) denote the projection having image V(x) and kernel
W(x). It remains only to prove that P (x) depends continuously on x in the desired
manner. Now, for any x ∈ X and u ∈ Cd, since P (x)u ∈ V(x) and u−P (x)u ∈ W(x)
we obtain from (17)

‖u‖ ≥ d(u,W(x)) = d(P (x)u,W(x)) ≥ δ1M−2‖P (x)u‖

so that ‖P (x)‖ ≤ δ−1
1 M2. Since P (x) fixes every element of V(x) we also have

‖P (x)‖ ≥ 1. We will show that if x, y ∈ X satisfy

(18) 3‖P (x)‖.[dGr(V(x),V(y)) + dGr(W(x),W(y))] <
1
2

then

(19) ‖P (x)− P (y)‖ ≤ 21‖P (x)‖3.[dGr(V(x),V(y)) + dGr(W(x),W(y))].

The result then follows by taking K2 := 21 sup ‖P‖3 ≤ 21M6δ−3
1 .

For notational convenience we write Q(x) = I−P (x) for all x ∈ X. For x, y ∈ X
define U(x, y) = P⊥V(y)P (x) + P⊥W(y)Q(x), where P⊥Z denotes orthogonal projection
onto Z. Clearly ‖U(x, y)‖ ≤ 2‖P (x)‖ + 1 ≤ 3‖P (x)‖. Since I = P (x) + Q(x) =
P⊥V(x)P (x) + P⊥W(x)Q(x) we have

(20) ‖U(x, y)− I‖ ≤ (2‖P (x)‖+ 1). [dGr(V(x),V(y)) + dGr(W(x),W(y))] .

Now suppose that x, y satisfy (18). Then U(x, y) is invertible and

‖U(x, y)−1 − I‖ ≤
∞∑
n=1

‖U(x, y)− I‖n(21)

≤ 6‖P (x)‖ [dGr(V(x),V(y)) + dGr(W(x),W(y))] .

Since for each v ∈ V(x) and w ∈ W(x) we have

U(x, y)P (x)(v + w) = U(x, y)v = P (y)U(x, y)(v + w)

it follows that P (y) = U(x, y)P (x)U(x, y)−1. Using the estimate

‖P (x)− P (y)‖ ≤ ‖(I − U(x, y))P (x)‖+ ‖U(x, y)P (x)(I − U(x, y)−1)‖

in combination with (20) and (21) yields (19) and the proof is complete.

4. Proof of Theorem 2.2

Let A and ||| · ||| be as in the statement of the theorem, and choose M ≥ 1 such
that |||v||| ≤M‖v‖ ≤M2|||v||| for all v ∈ Cd. As in the introduction we let A : AZ →
Matd(C) be given by projection onto the zeroth co-ordinate, let T : AZ → AZ be
the shift map, and let d to be the metric on AZ defined previously. Clearly A
and T are Lipschitz continuous. For each n ∈ N+ we have

{
A(x, n) : x ∈ AZ} =

{An · · ·A1 : Ai ∈ A} and therefore sup
{
|||A(x, n)||| : x ∈ AZ} = %+

n (A, ||| · |||) = 1. For
each n ∈ N let us define Yn := {x ∈ AZ : |||A(x, n)||| = 1}. Clearly each Yn is compact
and nonempty. If x ∈ Yn+1 then since

1 = |||A(x, n+ 1)||| = |||A(Tnx)A(x, n)||| ≤ |||A(Tnx)|||.|||A(x, n)||| ≤ |||A(x, n)||| ≤ 1
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we have x ∈ Yn also, and it follows that the compact set Y :=
⋂∞
n=0 Yn must be

nonempty. Similarly, x ∈ Yn+1 also implies

1 = |||A(x, n+ 1)||| ≤ |||A(Tx, n)|||.|||A(x)||| ≤ |||A(Tx, n)||| ≤ 1

and hence Tx ∈ Yn. We deduce that TY ⊆ Y as required. We remark that the
construction of Y using the extremal norm ||| · ||| could be compared to the use of
sub-actions in [14] or the “Mañé lemma” in [8].

Let Z = TZ be any nonempty minimal set contained in Y . Note that for all
x ∈ Z and n ∈ N we have ‖A(x, n)‖ ≤M2 since |||A(x, n)||| = 1. We may therefore
apply Theorem 2.1 to the minimal set Z and the cocycle A. If we were to have
p = 0 then we would have |||A(x, n)||| < 1 for some x ∈ Z and n ∈ N, so it must be
the case that p ≥ 1. To prove Theorem 2.2, we must show firstly that the functions
V,W and P provided by Theorem 2.1 are Hölder continuous, and secondly that for
all x ∈ Z and n ∈ N one has |||A(x, n)v||| = |||v||| for every v ∈ V(x).

The proof of Hölder continuity is straightforward. Let K1, ξ be as given by
Theorem 2.1, and let D = diamZ and α = log ξ/(log ξ − log 2) ∈ (0, 1). If D = 0
then the Hölder continuity of V, W and P holds trivially, so we assume D > 0.
Given two distinct points x, y ∈ Z, choose n ∈ N+ such that D(ξ/2)n < d(x, y) ≤
D(ξ/2)n−1. We have

‖A(x, n)−A(y, n)‖ ≤
n−1∑
i=0

∥∥A (T i+1x, n− i− 1
) (
A
(
T ix

)
−A(T iy)

)
A (y, i)

∥∥
≤M2

n−1∑
i=0

∥∥A (T ix)−A (T iy)∥∥
≤M22n

∑
i∈Z

∥∥A (T ix)−A (T iy)∥∥
2|i|

= M22nd(x, y) ≤ 2M2Dξn−1

and therefore

dGr(W(x),W(y)) ≤ K1

(
2M2Dξ−1 + 1

)
ξn ≤ K1D

−α (2M2Dξ−1 + 1
)
d(x, y)α

using the continuity estimate provided by Theorem 2.1. An almost identical argu-
ment shows that V is α-Hölder, and by Theorem 2.1 this implies that P is α-Hölder
also.

It remains to show that for every x ∈ Z and n ∈ N we have |||A(x, n)v||| =
|||v||| for every v ∈ V(x). We shall prove the following stronger result: for each
x ∈ Z, there exists an increasing sequence of natural numbers (nr) such that
limr→∞A(x, nr) = P (x). To see that this implies the desired result, note that if
v ∈ V(x) and |||A(x, n)v||| ≤ (1 − ε)|||v||| then |||A(x, nr)v||| ≤ (1 − ε)|||v||| for all large
enough r, and therefore |||P (x)v||| ≤ (1− ε)|||v|||; but since P (x) is a projection and v
belongs to its image, this is only possible in the case where v is zero. We conclude
that |||A(x, n)v||| = |||v||| whenever v ∈ V(x) and n ∈ N as desired.

Let us therefore define

S(x) :=
{
B : lim inf

n→∞
max

[
d(Tnx, x), |||A(x, n)−B|||

]
= 0
}

for each x ∈ Z. Note that S(x) is a subset of the “limit semigroup” S∞ of A consid-
ered by F. Wirth [48, 49]. We shall show that each S(x) is a closed subsemigroup
of S∞.



LOWER BOUND FOR THE JOINT SPECTRAL RADIUS 13

Fix x ∈ Z. Since T acts minimally on Z, x is recurrent, and since |||A(x, n)||| = 1
for each n we have S(x) 6= ∅. If B = limk→∞Bk with Bk ∈ S(x) for each k then
we may choose a strictly increasing sequence (nk) such that d(Tnkx, x) < 1/k,
|||Bk − B||| ≤ 1/k and |||A(x, nk) − Bk||| < 1/k for each k ∈ N+, which shows that
B ∈ S(x) and therefore S(x) is closed. Since clearly |||B||| = 1 for all B ∈ S(x) it
follows that S(x) is compact.

We now show that S(x) is a semigroup. Let B1, B2 ∈ S(x); it suffices to show
that for any N, ε > 0 there is n > N such that d(Tnx, x) < ε and |||A(x, n) −
B1B2||| < ε. Since B1 ∈ S(x) we can choose n1 > N such that |||A(x, n1) −
B1||| < ε/3 and d(Tn1x, x) < ε/2. Since B2 ∈ S(x) we may choose n2 > N such
that |||A(x, n2) − B2||| < ε/3 and such that d(Tn2x, x) is so small as to guarantee
|||A(Tn2x, n1)−A(x, n1)||| < ε/3 and d(Tn1+n2x, Tn1x) < ε/2. We have

|||A(x, n1 + n2)−B1B2||| ≤ |||A(Tn2x, n1)A(x, n2)−A(x, n1)A(x, n2)|||
+ |||A(x, n1)A(x, n2)−A(x, n1)B2|||
+ |||A(x, n1)B2 −B1B2||| < ε

and
d(Tn1+n2x, x) ≤ d(Tn1+n2x, Tn1x) + d(Tn1x, x) < ε

as required to prove the claim.
We now finish the proof. Since S(x) is a nonempty compact semigroup, it

contains an idempotent element P , i.e. a projection (see e.g. [28]). Let P =
limr→∞A(x, nr) where (nr) is an increasing sequence of natural numbers such that
Tnrx → x. Clearly ‖Pw‖ = limr→∞ ‖A(x, nr)w‖ = 0 when w ∈ W(x). If v is
a nonzero element of V(x) then A(x, nr)v ∈ V(Tnrx) by the invariance of V, and
since V is continuous it follows that Pv ∈ V(x). By Theorem 2.1 it also follows
that ‖Pv‖ = limr→∞ ‖A(x, nr)v‖ ≥ δ‖v‖ > 0 and therefore Pv 6= 0. We have
shown that the kernel of P is equal to W(x) whilst the image of P equals V(x),
and therefore P = P (x) as claimed. This completes the proof of Theorem 2.2.

5. Proof of Theorem 1.2

Let A be as given in the statement of Theorem 1.2. If %(A) = 0 then the
conclusion of the theorem follows from the fact that 0 ≤ %−n (A) ≤ %(A) for every
n ∈ N+, so we shall assume that %(A) > 0. It is clear that the validity of the
conclusion of the theorem is unaffected if we rescale A by a positive real number,
so without loss of generality we may assume that %(A) = 1.

The following lemma shows that there is also no loss of generality in assuming
that A is product bounded. Results of this general type are also used in the proofs
of Theorem 1.1 given by Berger-Wang [4], Elsner [19], and Shih et al. [46].

Lemma 5.1. Let A = {A1, . . . , Ar} ⊂ Matd(C) be a nonempty finite set such
that %(A) = 1, and suppose that A is not product bounded. Then there exist a
positive integer d̂ < d and a set Â = {Â1, . . . , Âr} ⊂ Matd̂(C) such that %(Â) = 1,
%−n (A) ≥ %−n (Â) for every n ∈ N+, and A is product bounded.

Proof. If A is not product-bounded then necessarily d ≥ 2. By [19, Lemma 4] there
exist an invertible matrix U ∈ Matd(C) and a positive integer d′ < d such that for
every i = 1, . . . , r, the matrix U−1AiU may be written in block upper-triangular
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form,

U−1AiU =
(
Bi ∗
0 Ci

)
,

where the matrices Bi, Ci have dimensions d′ × d′ and (d − d′) × (d − d′) respec-
tively. Let B = {B1, . . . , Br} and C = {C1, . . . , Cr}. Clearly we have %(A) =
max{%(B), %(C)} and %−n (A) = max{%−n (B), %−n (C)} for each n ∈ N+. Define Â := B

and d̂ := d′ if %(B) = 1, and Â := C, d̂ := d− d′ otherwise. It is clear that the new
set Â has all of the required features except perhaps for product boundedness. Re-
peating the above procedure by inductive descent we must eventually either obtain
a new product bounded set Â with d̂ > 1, or else reduce to the case d̂ = 1 in which
case product boundedness is satisfied automatically. �

For the remainder of this section we shall assume that A is a nonempty finite
set of d × d matrices such that %(A) = 1 and A is product bounded. Since A is
finite, the metric described in the introduction is Lipschitz equivalent to the more
easily-used metric given by

d [(Ai)i∈Z, (Bi)i∈Z] = 2− sup{n∈N : Ai=Bi for |i|≤n}.

The following proposition may be obtained easily by modifying a result of X. Bres-
saud and A. Quas [12, Theorem 1].

Proposition 5.2. Let A be finite, let Z ⊆ AZ be compact with TZ = Z, and let
N ∈ N+. Then there exist sequences of integers (rn), (mn) and a sequence of points
xn ∈ AZ such that m−1

n log n → 0 and such that for all sufficiently large n each rn
is divisible by N , rn ≤ n, T rnxn = xn and

max
0≤k<rn

d(T kxn, Z) ≤ 2−mn .

Now let ||| · ||| be an extremal norm for A, let Y be as in Theorem 2.2, and let
Z ⊆ Y be any nonempty minimal set. Let V, W, P , C, ξ and p be as given by
Theorem 2.2, and define Q(x) = I − P (x) for each x ∈ Z. If p = d then for each
x ∈ Z and n ∈ N the matrix A(x, n) is an isometry with respect to |||·|||; we therefore
have ρ(A(x, n)) = 1 for every x ∈ Z and n ∈ N so that the result follows trivially.
For the remainder of the proof we shall therefore assume that 1 ≤ p < d. Note that
for v ∈ V(x) and w ∈ W(x) we have

A(x, n)P (x)(v + w) = A(x, n)v = P (Tnx)A(x, n)(v + w)

and therefore A(x, n)P (x) = P (Tnx)A(x, n) for all x ∈ Z and n ∈ N. Clearly this
implies that A(x, n)Q(x) = Q(Tnx)A(x, n) for all x ∈ Z and n ∈ N.

The following two lemmas, and the general strategy of their application, are
suggested by [30]. For each x ∈ Z and θ > 0 let us define

C(x, θ) =
{
v ∈ Cd : θ|||P (x)v||| ≥ |||Q(x)v|||

}
.

Lemma 5.3. Let x, y ∈ Z and suppose that |||P (x) − P (y)||| ≤ θ < 1/5. Then
C(x, θ) ⊆ C(y, 3θ).

Proof. If v /∈ C(y, 3θ) then |||Q(y)v||| > 3θ|||P (y)v||| and therefore

3θ|||P (x)v||| ≤ 3θ|||P (y)|||+ 3θ2|||v||| < |||Q(y)v|||+ 3θ2|||v||| ≤ |||Q(x)v|||+ (θ + 3θ2)|||v|||
≤
(
1 + θ + 3θ2

)
|||Q(x)v|||+

(
θ + 3θ2

)
|||P (x)v|||
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and therefore

θ|||P (x)v||| ≤ 2θ − 3θ2

1 + θ + 3θ2
|||P (x)v||| < |||Q(x)v|||

so that v /∈ C(x, θ). �

Lemma 5.4. Let x ∈ Z and n ∈ N, and suppose that v ∈ C(x, θ) for some θ ∈ (0, 1].
Then A(x, n)v ∈ C(Tnx, L1ξ

nθ) and |||A(x, n)v||| ≥ (1−θ−L1ξ
nθ)|||v|||, where L1 > 1

does not depend on x, n, θ or v.

Proof. Let M = supz∈Z |||Q(z)||| ≥ 1 and L1 = 2CM > 1. If v ∈ C(x, θ) then clearly

|||v||| ≤ |||P (x)v|||+ |||Q(x)v||| ≤ (1 + θ)|||P (x)v|||.

Using Theorem 2.2 it follows that

|||P (Tnx)A(x, n)v||| = |||A(x, n)P (x)v||| = |||P (x)v||| ≥ (1 + θ)−1|||v|||

and

|||Q(Tnx)A(x, n)v||| = |||A(x, n)Q(x)v||| ≤ C1ξ
n|||Q(x)v||| ≤ CMθξn|||v|||.

Consequently

|||A(x, n)v||| ≥ |||P (Tnx)A(x, n)v||| − |||Q(Tnx)A(x, n)v||| ≥ (1− θ − L1θξ
n) |||v|||

and

|||Q(Tnx)A(x, n)v||| ≤ L1ξ
nθ|||P (Tnx)A(x, n)v|||

as required. �

We now prove Theorem 1.2. Let L2 > 1 and α ∈ (0, 1) such that |||P (x)−P (y)||| ≤
L2d(x, y)α for all x, y ∈ Z, let N ≥ 1 be large enough that L1ξ

N < 1/3, and let
(xn), (mn), (rn) be as given by Proposition 5.2. Suppose that n is large enough that
L22α(N−mn) < 1/5, mn ≥ N , and all of the properties listed in Proposition 5.2 are
satisfied. Let q = rn/N and choose z1, . . . , zq ∈ Z such that d(zi, T (i−1)Nxn) ≤
2−mn for each i. We then have

d(TNzi, zi+1) = max{d(TNz1, T iNxn), d(T iNxn, zi+1)} ≤ 2N−mn

for 1 ≤ i < q, and similarly d(TNzq, z1) ≤ 2N−mn . If v ∈ C(zi, L22α(N−mn)) for
1 ≤ i < q then we may apply Lemmas 5.3 and 5.4 to deduce that A(zi, N)v ∈
C(zi+1, L22α(N−mn)) and |||A(zi, N)v||| ≥ (1 − L221+α(N−mn))|||v|||, and similarly if
v ∈ C(zq, L22α(N−mn)) then A(zq, N)v ∈ C(z1, L22α(N−mn)) and |||A(zq, N)v||| ≥
(1− L221+α(N−mn))|||v|||. It follows that if v ∈ C(z1, L22α(N−mn)) then

A(xn, rn)v = A(zq, N) · · · A(z1, N)v ∈ C
(
z1, L22α(N−mn)

)
(where we have used mn ≥ N) and

|||A(xn, rn)v||| = |||A(zq, N) · · · A(z1, N)v||| ≥ (1− L221+α(N−mn))rn/N |||v|||.
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(Note that 1 − L221+α(N−mn) > 3/5 > 0 by our assumption on n.) If we choose
v ∈ C(z1, L22α(N−mn)) with |||v||| = 1, then since rn ≤ n we deduce

max
1≤k≤n

%−k (A) ≥ ρ(A(xn, rn))1/rn =
(

lim
k→∞

|||A(xn, rn)k|||1/k
)1/rn

≥
(

lim inf
k→∞

|||A(xn, rn)kv|||1/k
)1/rn

≥ (1− L221+α(N−mn))1/N ≥ 1− L221+α(N−mn).

It follows that for all large enough n

0 ≤ %(A)− max
1≤k≤n

%−k (A) ≤
(
L221+αN

)
2−αmn .

To complete the proof we have only to observe that the condition m−1
n log n→ 0 is

equivalent to the assertion that e−εmn = O(1/nr) for every r, ε > 0.

6. Discussion on possible extensions of Theorem 1.2

We shall now briefly discuss some of the limitations of the method of proof of
Theorem 1.2 and the prospects for an extension of that theorem using the approach
of the present article.

Fix some nonempty compact set Ω ⊂ Cd, and consider the metric space ΩZ

equipped with the metric d[(xi), (yi)] =
∑
i∈Z 2−|i|‖xi − yi‖ together with the shift

map T : ΩZ → ΩZ, which is Lipschitz continuous with Lipschitz constant 2. Given
a nonempty compact T -invariant set Z ⊆ ΩZ, let us define

ε(Z, n) = min
1≤k≤n

inf
Tkx=x

max
0≤i<k

dist(T ix, Z),

where dist(y, Z) := inf{d(y, z) : z ∈ Z}. The magnitude of the error term in the
proof of Theorem 1.2 is determined by the result of X. Bressaud and A. Quas in
[12] which asserts that if Ω is a finite set, then ε(Z, n) = O(1/nr) for every r > 0.
(To simplify our proof we in fact considered only approximations using periodic
orbits whose period is divisible by N , but this requirement could be dispensed
with without difficulty.) Bressaud and Quas’ result is essentially sharp: see [12]
and related work in [13]. In the case where Ω is compact but not finite, the rate
of decrease of ε(Z, n) can be much slower, and this is the principal obstacle in
extending Theorem 1.2 to the case in which A is compact but infinite. The following
simple example illustrates the problem.

Suppose that Ω = S1 ⊂ C. Let γ = (1−
√

5)/2 and define

Z =
{(
e2πimγω

)
m∈Z : ω ∈ S1

}
,

which is clearly compact and T -invariant. Let n ∈ N+ and 1 ≤ k ≤ n, and
suppose that x ∈ ΩZ has T kx = x and max0≤j<k dist(T jx, Z) = ε(Z, n). For
j = 0, . . . , k− 1 choose zj = (e2πimγωj)m∈Z ∈ Z such that d(T jx, z) ≤ ε(Z, n), and
define also zk = z0 and ωk = ω0. For 0 ≤ j < k we have∣∣e2πiγωj − ωj+1

∣∣ ≤ d(Tzj , zj+1) ≤ d(Tzj , T j+1x) + d(T j+1x, zj+1) ≤ 3ε(Z, n),

and it follows that∣∣e2πikγω0 − ω0

∣∣ ≤ k−1∑
j=0

∣∣∣e2πijγωj − e2πi(j+1)γωj+1

∣∣∣ ≤ 3kε(Z, n).
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However, it is well-known [27] that there exists δ > 0 such that |e2πimγ − 1| ≥ δ/m
for every m ∈ N+, and we deduce that ε(Z, n) ≥ δ/3k2 ≥ δ/3n2.

We conclude that if A ⊂ Matd(C) is some compact set of matrices which is
isometric to S1, then there exists a minimal invariant set Z ⊂ AZ such that ε(Z, n)
is not o(n−2). In particular, the method of Theorem 1.2 is in this case not strong
enough even to show that

%(A)− max
1≤k≤n

%−k (A) = O

(
1
n2α

)
,

where α ∈ (0, 1) is the Hölder exponent of the function P given by Theorem 2.2.
Since α could be arbitrarily small this estimate would anyway be inferior to the
estimate of J. Bochi described in the introduction. If we wish to achieve further
progress using the methods of the present article, therefore, the key step must be
to show that for a given set A ⊂ Matd(C) there is an extremal norm ||| · ||| for which
the set

(22) Y =
{
x ∈ AZ : %(A)−n|||A(x, n)||| = 1 ∀ n ∈ N+

}
contains a minimal set Z such that the quantity ε(Z, n) decreases with some spec-
ified rapidity as a function of n.

It should be remarked that the explicit structure of the set Y defined in (22)
is for the most part unknown, and so the range of minimal sets Z which may be
contained in such a set Y could in principle be quite limited, potentially leading
to improved estimates in Theorem 1.2. Indeed, the the finiteness conjecture of
J. Lagarias and Y. Wang, proposed in [35], was equivalent to the statement that
Y must always contain a periodic orbit. The existence of counterexamples to the
finiteness conjecture was established by T. Bousch and J. Mairesse [10], with a sim-
pler argument subsequently being given in [6]. At present, the only well-understood
examples of sets A in which Y does not contain a periodic orbit have the property
that the orbits in Y are “Sturmian” or “balanced” [10]. When Z consists of Stur-
mian orbits one may show that ε(Z, n) decreases exponentially as a function of n,
and in particular the arguments used in this article could be applied to obtain an
exponential estimate in Theorem 1.2 in this special case.
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