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Abstract. We prove that for a generic real-valued Hölder continuous function
f on a subshift of finite type, every shift-invariant probability measure which
maximises the integral of f must have zero entropy. An immediate corollary is
that zero-temperature limits of equilibrium states of certain one-dimensional
lattice systems generically have zero entropy. We prove an analogous state-
ment for generic Lipschitz observations of expanding maps of the circle.
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1. Introduction and statement of theorems

Let T : X → X be a dynamical system, where X is a compact metric space and T
is a continuous surjection. We consider the following question: given a continuous
real-valued function f : X → R, for which x ∈ X is the maximum ergodic average

(1) β(f) := sup
x∈X

lim sup
n→∞

1

n

n−1
∑

j=0

f(T jx),

attained? An alternative formulation is as follows. Writing MT for the set of all
T -invariant Borel probability measures on X , one may easily show that

(2) β(f) = sup

{
∫

f dµ : µ ∈ MT

}

and that there exists at least one µ ∈ MT such that
∫

f dµ = β(f). The Birkhoff
ergodic theorem then guarantees the existence of at least one point x ∈ X for which
the supremum (1) is attained. The problem of finding recurrent optimal orbits for
f in the sense of finding an x which realises the supremum (1), may thus be reduced
to the problem of finding those measures µ ∈ MT which attain the supremum (2).
We define a maximising measure of f : X → R to be a measure µ ∈ MT such
that

∫

f dµ = β(f), and denote the set of maximising measures of f by Mmax(f).
Interest in optimal orbits and maximising measures has arisen independently from
various topics, including the optimal control of hyperbolic dynamical systems [10,
19], the study of Lyapunov exponents [4, 7, 10], and abstract questions regarding the
geometry of the set of invariant measures of an expanding map [1, 11]. Maximising
measures also occur as zero-temperature limits of Gibbs equilibrium states [5, 13].

A particular research goal is to show that when the dynamical system (T, X)
is expanding, hyperbolic, or a subshift of finite type, and f is sufficiently regular,
the maximising measures of f are ‘typically’ supported on a periodic orbit of T .
Formally, we make the following conjecture:
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Conjecture 1. Let σ : ΣA → ΣA be a subshift of finite type, and let Hθ be the
Banach space of θ-Hölder continuous functions ΣA → R, where 0 < θ < 1 (see §2
for precise definitions). Then there is an open and dense set U ⊂ Hθ such that
every f ∈ U has a unique maximising measure, and this measure is supported on a
periodic orbit of σ. Moreover, every f ∈ U admits an open neighbourhood V ⊂ U
such that Mmax(g) = Mmax(f) for every g ∈ V .

A version of this conjecture was stated by G. Yuan and B. R. Hunt in the related
context of hyperbolic dynamical systems on compact manifolds [19]. Some related
questions and conjectures occur in [2, 7, 10, 12].

We now briefly describe some partial results towards Conjecture 1. Firstly, G.
Contreras, A. O. Lopes and P. Thieullen show in [7] that if µ ∈ Mσ is supported
on a periodic orbit, then the set of all f ∈ Hθ such that Mmax(f) = {µ} is open
in Hθ. Conversely, Yuan and Hunt show in [19] that if U ⊂ Hθ is open and
µ ∈

⋂

f∈U Mmax(f), then µ is supported on a periodic orbit of σ. An elegant and

general second proof of Yuan and Hunt’s result is given in [3]. It remains an open
problem to show that the set of functions f ∈ Hθ admitting a maximising measure
supported on a periodic orbit is dense in Hθ.

The objective of the present note is to prove the following weaked version of
Conjecture 1:

Theorem 1. Let σ : ΣA → ΣA be a subshift of finite type, and let Hθ be the
Banach space of θ-Hölder continuous real functions on Σ. Then there is a dense
Gδ set Z ⊂ Hθ such that for every f ∈ Z, Mmax(f) is a singleton set whose only
element has zero metric entropy.

Examples of f ∈ Hθ such that Mmax(f) includes measures of positive entropy
may be constructed as follows. If K ⊂ ΣA is a σ-invariant compact set which
supports a single ergodic measure µK , defining f(x) = −dθ(x, K) yields f ∈ Hθ

and Mmax(f) = {µK}. Constructions of such sets K for which htop(µK) > 0 may
be found in e.g. [9].

We remark that in the unpublished manuscript [8], J.-P. Conze and Y. Guivarc’h
prove a version of Theorem 1 in which Hθ is replaced with the Banach space of
functions f with summable variations. Their result makes use of the fact that
locally constant functions are dense in this Banach space, a property not enjoyed
by the space Hθ.

Theorem 1 admits the following interpretation in terms of thermodynamic for-
malism. Recall that for a continuous function f : ΣA → R, the pressure of f is
defined to be

P (f) = sup

{
∫

f dµ + h(µ) : µ ∈ Mσ

}

,

where h(µ) is the entropy of µ with respect to σ. If f is Hölder continuous and the
shift σ is topologically mixing, then f admits a unique equilibrium state µf ∈ Mσ,
which is defined to be the unique measure such that P (f) =

∫

f dµf + h(µf ) (see
e.g. [15, 16]). Introducing a real parameter λ, we consider the family of measures
{µλf}λ≥1. The limit λ → +∞ is termed the zero-temperature limit of the measures
µλf ([5, 13, 14]). We have

Corollary 1.1. Let σ : ΣA → ΣA be a topologically mixing subshift of finite type,
and let Hθ be as in Theorem 1. Then there is a dense Gδ set Z ⊂ Hθ such that for
every f ∈ Z, the weak-* limit limλ→∞ µλf exists and has zero entropy.
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Proof. Since Mσ is compact in the weak-* topology, it suffices to choose Z such
that for each f ∈ Z, the family {µλf}λ≥1 has at most one weak-* accumulation
point in the limit λ → ∞. It follows easily from the definitions of P (λf) and µλf

that any accumulation point of µλf must lie in Mmax(f) (see e.g. [7]) and so we
may let Z be as in Theorem 1.

�

It is currently an open question whether the family {µλf}λ≥1 converges in the
limit λ → ∞ for every f ∈ Hθ. Some partial results may be found in [5, 14].

We also prove a result analogous to Theorem 1 in the context of expanding
maps of the circle. Given a C2 expanding map T of the circle S1, let MT be the
set of all T -invariant probability measures on S1, and let CLip(S

1) be the set of all
Lipschitz continuous real-valued functions on S1 equipped with its usual structure
as a Banach space. For each f ∈ CLip(S

1) we may define Mmax(f) as before. We
give an outline of the proof of the following:

Theorem 2. Let T : S1 → S1 be a C2 expanding map of the circle. Then there is
a dense Gδ set Z ⊂ CLip(S

1) such that for every f ∈ Z, Mmax(f) is a singleton
set whose only element has zero metric entropy.

The structure of this note is as follows. In §2 we give the definition of a subshift
of finite type and of the spaces Hθ, and state some preliminary lemmas. In §3 we
give the proof of Theorem 1. Finally, in §4 we outline the necessary changes to the
proof of Theorem 1 which are required to prove Theorem 2.

2. Definitions and preliminary results

Let A be a ℓ× ℓ matrix with entries in {0, 1}. We define the (one-sided) subshift
of finite type associated to A to be the set

ΣA =
{

x = (xi)i∈N
: xi ∈ {1, 2, . . . , ℓ} and A(xi, xi+1) = 1 for all i ≥ 1

}

together with the shift map σ : ΣA → ΣA defined by

σ
[

(xi)i≥1

]

= (xi+1)i≥1 .

For each 0 < θ < 1 we define a metric on ΣA by

dθ

(

(xi)i≥1
, (yi)i≥1

)

=

{

θinf{i : xi 6=yi} when x 6= y
0 when x = y.

We say that f : ΣA → R is θ-Hölder continuous if it is Lipschitz continuous with
respect to the metric dθ. We denote the space of θ-Hölder continuous functions on
ΣA by Hθ. If we define

‖f‖θ = sup
x∈ΣA

|f(x)| + sup
x,y∈ΣA

x 6=y

|f(x) − f(y)|

dθ(x, y)

for each f ∈ Hθ, then (Hθ, ‖ · ‖θ) is a Banach space.
We denote by Mσ the set of all σ-invariant Borel probability measures on

ΣA. For each f : ΣA → R, we let β(f) = supµ∈Mσ

∫

f dµ and Mmax(f) =
{

µ ∈ Mσ :
∫

f dµ = β(f)
}

as in §1. For every µ ∈ Mσ, we denote the metric
entropy of µ with respect to σ by h(µ).

We now summarise some already-known results in a manner convenient for the
proof of Theorem 1.
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Lemma 2.1. Let a1, . . . , an be nonnegative real numbers, and let A =
∑n

i=1
ai ≥ 0.

Then
n
∑

i=1

−ai log ai ≤ 1 + A log n

where we use the convention 0 log 0 = 0.

Proof. Applying Jensen’s inequality to the concave function x 7→ −x logx yields

1

n

n
∑

i=1

−ai log ai ≤ −

(

1

n

n
∑

i=1

ai

)

log

(

1

n

n
∑

i=1

ai

)

= −
A

n
log A +

A

n
log n

from which the result follows. �

Lemma 2.2. Let f ∈ Hθ, and suppose that Mmax(f) = {µ} for some µ ∈ Mσ.
Then there is C > 0 such that for every ν ∈ Mσ,

β(f) − C

∫

dθ(x, K) dν ≤

∫

f dν

where K = suppµ.

Proof. By a well-known lemma (see e.g. [2, 7, 17]) there exists g ∈ Hθ such that

f − g ◦ σ + g ≤ β(f). Define f̃ = f − g ◦ σ + g. Since f̃ is continuous,
∫

f̃ dµ =
∫

f dµ = β(f) and f̃ ≤ β(f), it follows that f̃(x) = β(f) for every x ∈ K = suppµ.

Let C = ‖f̃‖θ. Given x ∈ ΣA, let z ∈ K such that dθ(x, z) = dθ(x, K); we then
have

f̃(x) ≥ f̃(z) − Cdθ(x, z) = β(f) − Cdθ(x, K)

from which the result follows. �

For a proof of the following result see [7]. A particularly general version may be
found in [12].

Proposition 2.3. Let T : X → X be a continuous surjection of a compact metric
space, and let X be a Banach space which embeds continuously in C0(X ; R) with
dense image. Then the set of all f ∈ X such that Mmax(f) is a singleton set is a
dense Gδ subset of X.

3. Proof of Theorem 1

For each p ≥ 1, we let Mp
σ denote the set of all ergodic elements of Mσ which

are supported on a periodic orbit of prime period less than or equal to p. In the
sequel we will identify a periodic orbit {z, σz, . . . , σp−1z} of σ with its corresponding

invariant measure µ = 1

p

∑p−1

j=0
δσjz ∈ Mp

σ, and refer to a measure µ as ‘being’ a

periodic orbit. We fix θ ∈ (0, 1) throughout this section.
For each γ > 0, define

Eγ = {f ∈ Hθ : h(µ) < 2γhtop(σ) for every µ ∈ Mmax(f)} .

To prove the theorem it suffices to show that Eγ is open and dense in Hθ for every
γ > 0, and then apply Baire’s theorem and Proposition 2.3. To this end we fix
γ > 0 for the remainder of the proof.

Step 1. We begin by showing that each Eγ is open. Let f ∈ Hθ, and suppose
that fn → f in Hθ. If fn ∈ Hθ \ Eγ for every n > 0, then for each n we may choose
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νn ∈ Mmax(fn) such that h(νn) ≥ 2γhtop(σ). Taking a subsequence if necessary,
we may assume that νn → ν ∈ Mσ. For any µ ∈ Mσ, we have for each n > 0

∫

f dµ − |f − fn|∞ ≤

∫

fn dµ ≤

∫

fn dνn ≤

∫

f dνn + |fn − f |∞

and therefore
∫

f dµ ≤
∫

f dν. It follows that ν ∈ Mmax(f). Since νn → ν
and the entropy map m 7→ h(m) is upper semi-continuous (see e.g. [18]) we have
h(ν) ≥ 2γhtop(σ) and therefore f ∈ Hθ \ Eγ . We conclude that Hθ \ Eγ is closed
and therefore Eγ is open.

Step 2. We must show that Eγ intersects every nonempty open subset of Hθ;
this takes up the bulk of the proof. We begin by reducing the problem slightly.

Let U ⊂ Hθ be open and nonempty; by Proposition 2.3, there exists f ∈ U such
that Mmax(f) consists of a single element. If this element is a periodic orbit, then
f ∈ Eγ ∩ U and we are done. Otherwise, by Lemma 2.2 there exists a real number
C > 0 and a compact invariant set K such that for every µ ∈ Mσ,

(3) β(f) − C

∫

dθ(x, K) dµ ≤

∫

f dµ

and such that K does not contain a periodic orbit.
Let ε > 0 be small enough that f +g ∈ U whenever ‖g‖θ ≤ 2ε. We will construct

a sequence of approximating functions fn such that fn ∈ U ∩ Eγ for large enough
n. In the next two steps we choose a sequence of periodic orbits which will be used
in the construction.

Step 3. We make the following claim: there exists a sequence of integers
(mn)n≥1 and a sequence of periodic orbits µn ∈ Mn

σ such that
∫

dθ(x, K) dµn = o(θmn)

and

lim
n→∞

log n

mn

= 0.

Proof of claim. A theorem of X. Bressaud and A. Quas1 [6, Theorem 2] states
that for every k > 0,

lim
n→∞

nk

(

inf
µ∈Mn

σ

∫

dθ(x, K) dµ

)

= 0.

Thus there exists a sequence of periodic orbits µn, with each µn ∈ Mn
σ, such that

for every k > 0

lim
n→∞

nk

∫

dθ(x, K) dµn = 0.

Define a sequence of real numbers rn by

rn = logθ

(
∫

dθ(x, K) dµn

)

.

Since

θrn ≤ nkθrn ≤ 1 ⇐⇒ 0 ≥
logθ n

rn

≥ −
1

k

1Bressaud and Quas’ theorem is stated under the requirement that Σ be a full shift, but their
proof may be easily adapted to the case of a subshift of finite type.
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we deduce that r−1
n log n → 0. We therefore define mn = ⌊ 1

2
rn⌋ so as to yield

m−1
n log n → 0 and

∫

dθ(x, K) dµn = θrn ≤ θmn+ 1

2
rn = o(θmn)

as required.
Step 4. For each n ≥ 1, define Ln = suppµn. We make the following second

claim concerning the periodic orbits µn: there exists Nγ > 0 such that when
n ≥ Nγ ,

ν ({x ∈ ΣA : dθ(x, Ln) ≥ θmn}) > γ

for every invariant measure ν ∈ Mσ such that h(ν) ≥ 2γhtop(σ).
Proof of claim. For each k > 0, let Ωk be the set of all closed θk-balls (or

equivalently k-cylinders) in ΣA. Note that for each k, Ωk is a finite partition of ΣA

into clopen sets. Recall that

htop(σ) = lim
k→∞

1

k
log #Ωk.

Since m−1
n log n → 0 by the claim in Step 3, there exists Nγ such that if n ≥ Nγ ,

then

(4)
log n

mn

+ γ
log #Ωmn

mn

+
2

mn

< 2γhtop(σ).

Now let ν ∈ Mσ and suppose that

(5) ν ({x ∈ ΣA : dθ(x, Ln) ≥ θmn}) ≤ γ

for some n ≥ Nγ . We will show that necessarily h(ν) < 2γhtop(σ), which proves
the claim.

Recall from e.g. [18] that

h(ν) = inf
k≥1

1

k

∑

ω∈Ωk

−ν(ω) log ν(ω).

Let Wn ⊆ Ωmn
be the set of all elements of Ωmn

which intersect Ln. Since µn is
a periodic orbit of period not more than n, it follows that Wn has cardinality at
most n. Define

γ̃ :=
∑

ω∈Ωmn\Wn

ν(ω) = ν ({x ∈ ΣA : dθ(x, Ln) > θmn}) .

If (5) holds then clearly 0 ≤ γ̃ ≤ γ. Using Lemma 2.1 in combination with (4), it
follows that

h(ν) ≤
1

mn

∑

ω∈Wn

−ν(ω) log ν(ω) +
1

mn

∑

ω∈Ωmn\Wn

−ν(ω) log ν(ω)

≤
1 − γ̃

mn

log n +
γ̃

mn

log #Ωmn
+

2

mn

< 2γhtop(σ),

which proves the claim.
Step 5. We now complete the proof. Define a sequence of functions fn ∈ Hθ by

(6) fn(x) = f(x) + ε − εdθ(x, Ln),
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where Ln = suppµn as above. From the definition of ε we have fn ∈ U for each
n ≥ 1. From Step 3 we have

∫

dθ(x, K) dµn = o(θmn),

and from Step 4 it follows that when n is sufficiently large,
∫

dθ(x, Ln) dν ≥ θmnν ({x ∈ ΣA : dθ(x, Ln) ≥ θmn}) ≥ γθmn

for all ν ∈ Mσ such that h(ν) ≥ 2γhtop(σ).
We may therefore choose n such that ε

∫

dθ(x, Ln) dν > C
∫

dθ(x, K) dµn for
every ν ∈ Mσ such that h(ν) ≥ 2γhtop(σ). It follows that for every such measure
ν

∫

fn dν =

∫

f dν + ε − ε

∫

dθ(x, Ln) dν

< β(f) − C

∫

dθ(x, K) dµn + ε

≤

∫

f dµn + ε =

∫

fn dµn ≤ β(fn),

where we have applied (3) and (6). We have shown that if ν ∈ Mσ and h(ν) ≥
2γhtop(σ), then ν /∈ Mmax(fn), and therefore fn ∈ Eγ ∩U . We conclude that Eγ is
dense in Hθ and the theorem is proved.

4. Proof of Theorem 2

The proof of Theorem 2 follows the same general lines as that of Theorem 1. In
this section we briefly outline the similarities and differences. Let T : S1 → S1 be
a C2 expanding map of degree D, |D| ≥ 2. As in Theorem 1, we begin by defining

Eγ =
{

f ∈ CLip(S
1) : h(µ) < 2γ log |D| for every µ ∈ Mmax(f)

}

for each γ > 0, and proceed to show that each Eγ is open and dense in CLip(S
1).

Step 1 proceeds by direct analogy with Theorem 1. We require an additional step:
Step 1A. Let P be a partition of S1 into |D| intervals such that TI = S1 for

each I ∈ P , and

(7)

∞
∨

j=0

T−jP = B

where B is the Borel σ-algebra of S1. The equation (7) implies that for every
ν ∈ MT

h(ν) = inf
k≥1

1

k

∑

I∈
Wk−1

j=0
T−jP

−ν(I) log ν(I),

see e.g. [18].
We make the following claim: there exists τ > 0 such that every ball of radius

τn in S1 intersects no more than 3 elements of
∨n−1

j=0
T−jP . To prove the claim, it

suffices to show that we may choose τ small enough that every I ∈
∨n−1

j=0
T−jP is

of length not less than τn.
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In Step 2 we proceed as for Theorem 1. In Step 3 we proceed as before, except
that we choose the sequences (µn)n≥1 and (mn)n≥1 such that

∫

d(x, K) dµn = o(τmn)

and m−1
n log n → 0. In this case the relevant result in the article of Bressaud and

Quas is [6, Theorem 3].
Step 4 takes the following form: we wish to choose Nγ > 0 such that when

n ≥ Nγ ,

ν
({

x ∈ S1 : d(x, Ln) ≥ τmn
})

> γ

for every invariant measure ν ∈ MT such that h(ν) ≥ 2γ log |D|. To see that this
is possible, choose Nγ large enough that n ≥ Nγ implies

log n

mn

+ γ log |D| +
2 + log 3

mn

< 2γ log |D|.

Let n ≥ Nγ and ν ∈ MT , and suppose that

(8) ν
({

x ∈ S1 : d(x, Ln) ≥ τmn
})

≤ γ.

Let Wn be the set of all intervals J ∈
∨mn−1

j=0
T−jP such that d(x, Ln) < τmn for

some x ∈ J . Note that

(9)
⋃

I∈(
Wmn−1

j=0
T−jP)\Wn

I ⊆
{

x ∈ S1 : d(x, Ln) ≥ τmn
}

.

The claim in Step 1A implies that the cardinality of Wn is at most 3n, and if we
define

γ̃ :=
∑

I∈(
Wmn−1

j=0
T−jP)\Wn

ν(I)

then clearly (8) and (9) yield 0 ≤ γ̃ ≤ γ. We deduce that

h(ν) ≤
1 − γ̃

mn

log n + γ̃ log |D| +
2 + log 3

mn

< 2γ log |D|

as in the previous section, which completes the proof of the claim. Step 5 now
proceeds after the same fashion and Theorem 2 is proved.
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