2. Two Basic Constructions

Free Products with amalgamation. Let $\{G_i \mid i \in I\}$ be a family of gps, *A* a gp and $\alpha_i : A \longrightarrow G_i$ a monomorphism, $\forall i \in I$. A gp *G* is the *free product* of the G_i with *A* amalgamated (via the α_i) if \exists homomorphisms $f_i : G_i \longrightarrow G$ such that $f_i \alpha_i = f_j \alpha_j \forall i, j \in I$, and if $h_i : G_i \longrightarrow H$ are homomorphisms with $h_i \alpha_i = h_j \alpha_j$ for all $i, j \in I$, then there is a unique homomorphism $h : G \longrightarrow H$ such that $hf_i = h_i$ for all $i \in I$.

Call *h* an *extension* of the homoms. h_i .

Note. Follows: *G* is generated by $\bigcup_{i \in I} f_i(G_i)$.

Let G_0 be the subgroup of G generated by this set.

Take $H = G_0$ and $h_i = f_i$, viewed as a mapping to G_0 , in the defn.

 \exists an extn to a homomorphism $f: G \longrightarrow G_0$.

Let $e: G_0 \longrightarrow G$ be the inclusion map. Then ef and $id_G: G \longrightarrow G$ are both extns of the maps $f_i: G_i \longrightarrow G$. Since the extn is unique, $ef = id_G$, so e is onto, hence $G = G_0$.

Uniqueness. Let $f'_i : G_i \longrightarrow G'$ be homomorphisms such that $f'_i \alpha_i = f'_j \alpha_j$ for all $i, j \in I$, and if $h_i : G_i \longrightarrow H$ are homomorphisms with $h_i \alpha_i = h_j \alpha_j$ for all $i, j \in I$, then there is a unique homomorphism $h' : G' \longrightarrow H$ such that $h'f'_i = h_i$ for all $i \in I$.

In the defn, take $h_i = f'_i$, to obtain a homomorphism $f: G \longrightarrow G'$ such that $ff_i = f'_i$ for all *i*. Interchanging *G* and *G'*, get $f': G' \longrightarrow G$ such that $f'f'_i = f_i$ for all *i*. Take H = G, $h_i = f_i$ in the defn; both f'f and $id_G: G \longrightarrow G$ are extensions of the $f_i: G_i \longrightarrow G$. Since the extension is unique, $f'f = id_G$. Interchanging *G* and *G'*, $ff' = id_{G'}$, so *f* and *f'* are inverse isomorphisms. **Existence.** let $\langle X_i | R_i \rangle$ be a presn of G_i , with $X_i \cap X_j = \emptyset$ for $i \neq j$. Let *Y* be a set of generators for *A* and, for each $y \in Y$, $i \in I$ let $a_{i,y}$ be a word in $X_i^{\pm 1}$ representing $\alpha_i(y)$. Let

$$S = \left\{ a_{i,y} \, a_{j,y}^{-1} \mid y \in Y, \, i, j \in I, \, i \neq j \right\}.$$

Let *G* be the group with presentation $\langle \bigcup_{i \in I} X_i | \bigcup_{i \in I} R_i \cup S \rangle$. Then *G* is the free product with amalgamation. There is an obvious mapping $X_i \longrightarrow G$,

which (by defn of a presentation) induces a homomorphism $f_i : G_i \longrightarrow G$. The existence and uniqueness of the mapping *h* in the definition follows by defn of a presentation.

If G is the free product of $\{G_i \mid i \in I\}$ with A amalgamated, write $G = *_A G_i$.

In case of two groups $\{G_1, G_2\}$, write $G = G_1 *_A G_2$. **Example.** let $G_1 = \langle x \rangle$, $G_2 = \langle y \rangle$, $A = \langle a \rangle$ inf. cyclic. $\alpha_1 : a \mapsto x^2$, $\alpha_2 : a \mapsto y^3$. $G = G_1 *_A G_2$ has presentation $\langle x, y | x^2 = y^3 \rangle$, after Tietze transformations.

Structure of free prods with amalgamation.

Let $G = \bigstar_A G_i$ via $\alpha_i : A \to G_i$, $i \in I$. To represent elts of G by certain words, identify A with $\alpha_i(A)$ and assume $G_i \cap G_j = A$ for $i \neq j$.

Define a *word* to be a finite sequence

$$w = (g_1, \ldots, g_k),$$

where $k \ge 1$ and $g_1 \in G_{i_1}, \ldots, g_k \in G_{i_k}$ for some $i_1, \ldots, i_k \in I$. Elt. of *G* represented by *w* is $f_{i_1}(g_1) \ldots f_{i_k}(g_k)$. Since $\bigcup_{i \in I} f_i(G_i)$ generates *G* and the f_i are homoms, every element of *G* is

repd by some word. **Definition.** Let $w = (g_1, ..., g_k)$ be a word with $g_j \in G_{i_j}$, $1 \le j \le k$. Then

w is reduced if

- (1) $i_j \neq i_{j+1}$ for $1 \le j \le k-1$;
- (2) $g_j \notin A$ for $1 \le \overline{j} \le \overline{k}$, unless k = 1.

If (1) fails, can replace w by $(g_1, \ldots, g_j g_{j+1}, \ldots, g_k)$, representing the same element of G.

If (2) fails, can also replace *w* by a shorter word.

Hence every elt of G is represented by a reduced word (take a word of shortest length representing it).

For every $i \in I$, choose a transversal T_i for the cosets $\{Ax \mid x \in G_i\}$, with $1 \in T_i$. Let $g \in G$ be represented by the reduced word (g_1, \ldots, g_k) with $g_j \in G_{i_j}$.

Can write:

$$g_{k} = a_{k}r_{k} \qquad (a_{k} \in A, r_{k} \in T_{i_{k}})$$

$$g_{k-1}a_{k} = a_{k-1}r_{k-1} \qquad (a_{k-1} \in A, r_{k-1} \in T_{i_{k-1}})$$

$$\vdots \qquad \vdots$$

$$g_{1}a_{2} = a_{1}r_{1} \qquad (a_{1} \in A, r_{1} \in T_{i_{1}}).$$

Then $g_1 = a_1 r_1 a_2^{-1}$, $g_2 = a_2 r_2 a_3^{-1}$,..., $g_k = a_k r_k$ and $(a_1, r_1, r_2, ..., r_k)$ is a word representing g.

Definition. A *normal* word is a word (a, r_1, \ldots, r_k) where $a \in A$, $k \ge 0$, $r_j \in T_{i_j} \setminus \{1\}$ for some $i_j \in I$ $(1 \le j \le k)$, and $i_j \ne i_{j+1}$ for $1 \le j \le k-1$.

Thus any element of *G* is represented by a normal word. ($a \in A$ is represented by the normal word (a).)

Theorem 2.1 (Normal Form Theorem). Any element of G is represented by a unique normal word.

Proof. Need to show uniqueness. Let W = set of normal words.

Will define an action of *G* on *W*, equivalently, a homom. $h: G \longrightarrow S(W)$ (symmetric group on *W*).

By define of *G*, suffices to define, for $i \in I$, a homom. $h_i : G_i \longrightarrow S(W)$ with $h_i \alpha_i = h_j \alpha_j$ for all $i, j \in I$.

So with the identifications made, need homomorphisms h_i which agree on A.

Let $W_i = \{(1, r_1, \dots, r_k) \in W \mid r_1 \notin T_i\}$ $(i \in I)$. Define $\theta_i : G_i \times W_i \longrightarrow W$ as follows. If $g \in G_i$, write g = ar, where $r \in T_i$, $a \in A$. Then

$$\theta_i(g, (1, r_1, \dots, r_k)) = \begin{cases} (a, r, r_1, \dots, r_k) & \text{if } r \neq 1 \text{ (i.e. } g \notin A) \\ (a, r_1, \dots, r_k) & \text{if } r = 1. \end{cases}$$

 θ_i is bijective (exercise).

Now G_i acts on $G_i \times W_i$ by left mult. on the first co-ordinate, giving a homomorphism $\lambda_i : G_i \longrightarrow S(G_i \times W_i)$, where $\lambda_i(g)(x,w) = (gx,w)$. Set $h_i(g) = \theta_i \lambda_i(g) \theta_i^{-1}$. Since λ_i is a homomorphism, so is h_i . If $a \in A$,

$$h_i(a)(a',r_1,\ldots,r_k)=(aa',r_1,\ldots,r_k)$$

and RHS is independent of *i*.

Thus the h_i define a homomorphism $h: G \longrightarrow S(W)$.

Let $g \in G$ be represented by the normal word $w = (a, r_1, ..., r_k)$. Then h(g)(1) = w (induction on k) so w is uniquely determined by g.

Corollary 2.2. (1) The homomorphisms f_i are injective; (2) no reduced word of length greater than 1 represents the identity element of G.

Proof. (1) If $f_i(g) = 1$, write g = ar with $a \in A$, $r \in T_i$. Then the normal word (a, r) (or (a), if r = 1) represents 1, so a = r = 1, ie g = 1.

(2) If a reduced word has length k > 1, procedure above gives a normal word of length k + 1 representing same elt of *G*, which cannot be 1 by Theorem 2.1.

By Cor. 2.2(1), the f_i can be suppressed.

Important special case: $A = \{1\}$.

G is called the *free product* of the family $\{G_i \mid i \in I\}$, written $G = \bigstar_{i \in I} G_i$ (or $G = G_1 * G_2$ for two groups).

A reduced word is a word (g_1, \ldots, g_k) such that $g_j \in G_{i_j}, g_j \neq 1$ unless k = 1, and $i_j \neq i_{j+1}$ for $1 \leq j \leq k-1$.

Normal Form Theorem simplifies: every element of G is represented by a unique reduced word. Also, the G_i embed in G.

Defining property simplifies to: given any collection of homomorphisms $h_i: G_i \longrightarrow H$, there is a unique extension to a homomorphism $h: G \longrightarrow H$. Presn used to show existence simplifies.

Let $\langle X_i | R_i \rangle$ be a presentation of G_i (via some mapping which will be suppressed), with $X_i \cap X_j = \emptyset$ for $i \neq j$. Then $\underset{i \in I}{*} G_i$ has presentation $\langle \bigcup_{i \in I} X_i | \bigcup_{i \in I} R_i \rangle$.

[This is obtained from the presentation above by taking the empty presentation of the trivial group, with no generators and no relations.]

Examples. (1) $\langle x, y | x^2 = 1, y^2 = 1 \rangle$ is a presentation of $C_2 * C_2$, the *infinite dihedral group*. Has D_n as a homomorphic image.

(2) $C_2 * C_3$ has presentation $\langle x, y | x^2 = 1, y^3 = 1 \rangle$. This group is called the *modular group*, and is isomorphic to PSL₂(\mathbb{Z}).

(3) *F* free with basis $\{x_i \mid i \in I\}$; then $F = \bigstar_{i \in I} \langle x_i \rangle$, a free product of infinite cyclic groups.

(4) Trefoil knot *K*; group of the knot, $\pi_1(\mathbb{R}^3 - K)$ has presn

$$\langle a, b \mid aba = bab \rangle$$

 $\xrightarrow{\text{Tietze}}_{\text{transf.}} \quad \langle x, y \mid x^2 = y^3 \rangle \text{ (previous example).}$

HNN-extensions. Suppose *B*, *C* are subgroups of a group *A* and $\gamma : B \longrightarrow C$ is an isomorphism.

Let *G* have presentation $\langle \{t\} \cup X \mid R_1 \cup R_2 \rangle$, where

$$X = \{x_g \mid g \in A\}, \quad t \notin X$$

$$R_1 = \{x_g x_h x_{gh}^{-1} \mid g, h \in A\}$$

$$R_2 = \{t x_b t^{-1} x_{\gamma(b)}^{-1} \mid b \in B\}.$$

 \exists a homom. $f : A \to G$ given by $a \mapsto x_a$; will show f is injective.

Definition. The group G is called an HNN-extension with *base A*, *associated pair* of subgroups B, C and *stable letter t*.

Presn is often abbreviated to $\langle t, A | \operatorname{rel}(A), tBt^{-1} = \gamma(B) \rangle$ or just

$$\langle t, A \mid \operatorname{rel}(A), tBt^{-1} = C \rangle.$$

More generally, Let $\langle Y | S \rangle$ be a presentation of *A*, let $\{b_j | j \in J\}$ be a set of words in $Y^{\pm 1}$ representing a set of generators for *B*, and let c_j be a word representing $\gamma(b_j)$ [more accurately, γ (the generator represented by b_j)]. Then

$$\langle \{t\} \cup Y \mid S \cup \{tb_j t^{-1} = c_j \mid j \in J\} \rangle$$

is also a presentation of G. (Exercise.)

Example. (Baumslag-Solitar) $\langle x, y | xy^2x^{-1} = y^3 \rangle$ is an HNN-extension, base an infinite cyclic group $A = \langle y \rangle$, stable letter *x*, assoc.pair $\langle y^2 \rangle$, $\langle y^3 \rangle$. (Famous example of a non-Hopfian group.)

In general, *G* is generated by $f(A) \cup \{t\}$, so every element of *G* is represented in an obvious way by a word

$$(g_0, t^{e_1}, g_1, t^{e_2}, g_2, \dots, t^{e_k}, g_k)$$

where $k \ge 0$, $e_i = \pm 1$ and $g_i \in A$ for $0 \le i \le k$.

Definition. Such a word is *reduced* if it has no part of the form t, b, t^{-1} with $b \in B$ or t^{-1}, c, t with $c \in C$.

Any element of G is represented by a reduced word (take a word of minimal length representing it).

Choose a transversal T_B for the cosets $\{Bg \mid g \in A\}$ and a transversal T_C for the cosets $\{Cg \mid g \in A\}$, with $1 \in T_B$, T_C .

Definition. A *normal word* is a reduced word $(g_0, t^{e_1}, r_1, t^{e_2}, r_2, \dots, t^{e_k}, r_k)$, where $g_0 \in A$, $r_i \in T_B$ if $e_i = 1$ and $r_i \in T_C$ if $e_i = -1$.

Suppose $(g_0, t^{e_1}, g_1, t^{e_2}, g_2, \dots, t^{e_k}, g_k)$ is a reduced word with $k \ge 1$. If $e_k = 1$, write $g_k = br$ with $b \in B$, $r \in T_B$. Then

$$(g_0, t^{e_1}, g_1, t^{e_2}, g_2, \dots, g'_{k-1}, t^{e_k}, r)$$

where $g'_{k-1} = g_{k-1}\gamma(b)$, represents the same element of *G*. If $e_k = -1$, write $g_k = cr$ with $c \in C$ and $r \in T_C$. Then

$$(g_0, t^{e_1}, g_1, t^{e_2}, g_2, \dots, g'_{k-1}, t^{e_k}, r)$$

where $g'_{k-1} = g_{k-1}\gamma^{-1}(c)$, represents the same element of *G*. Repetition leads to a normal word representing the same element of *G*.

Theorem 2.3. (Normal Form Theorem.) Every element of G is represented by a unique normal word.

Proof. Omitted.

Corollary 2.4. (1) The homomorphism $f: A \longrightarrow G$ is injective: (2) (Britton's Lemma) no reduced word $(g_0, t^{e_1}, g_1, t^{e_2}, g_2, \dots, t^{e_k}, g_k)$ with k > 0 represents the identity element of G.

More generally, given A and a family $\gamma_i : B_i \longrightarrow C_i$ $(i \in I)$ of isomorphisms, where B_i , C_i are subgroups of A, we can form the HNN-extension with presentation (in abbreviated form)

$$\langle t_i \ (i \in I), \ G \mid \operatorname{rel}(G), \ t_i B_i t_i^{-1} = \gamma_i(B_i) \ (i \in I) \rangle.$$

There are generalisations of the Normal Form Theorem and its corollary.

An application.

Theorem 2.5. Any countable group can be embedded in a 2-generator group.

Proof. Let $G = \{g_0, g_1, g_2, ...\}$, where $g_0 = 1$. Let *F* be free with basis $\{a, b\}$.

 $\langle b^n a b^{-n} \ (n \ge 0) \rangle$ is a free subgp of F with the given elts as basis. Similarly $\langle a^n b a^{-n} \ (n \ge 0) \rangle$ is a free subgp. (See Exercise 2, Sheet 1.)

Claim: in G * F, $\langle g_n a^n b a^{-n} \ (n \ge 0) \rangle$ is free with basis the given elts. For the homoms. $G \to F$, $g \mapsto 1$ and $id_F : F \to F$ have an extn to a homom. $f: G * F \to F$. If w is repd by a non-empty reduced word in $\{g_n a^n b a^{-n} \mid (n \ge 0)\}^{\pm 1}$ of positive length, then f(w) is repd by a corresponding reduced word in $\{a^n b a^{-n} \mid (n \ge 0)\}^{\pm 1}$, so $f(w) \ne 1$, hence $w \ne 1$. Claim follows (see Exercise 1, Sheet 1).

Can form HNN-extn

$$H = \langle t, G \ast F \mid \operatorname{rel}(G \ast F), t(b^n a b^{-n}) t^{-1} = g_n a^n b a^{-n} \ (n \ge 0) \rangle.$$

Then $G \leq G * F \leq H$, $g_n \in \langle t, a, b \rangle$, and $(n = 0) tat^{-1} = b$, so $H = \langle t, a \rangle$. \Box