2. Two BASIC CONSTRUCTIONS

Free Products with amalgamation. Let {G; | i € I} be a family of gps,
A agpand ; : A— G; amonomorphism, Vi € I. A gp G is the free product
of the G; with A amalgamated (via the ;) if 3 homomorphisms f;: Gi— G
such that fio; = fjot; Vi, j €1, and if h; : G; — H are homomorphisms with
hia; = hja;foralli, j € I, then there is a unique homomorphism 4 : G — H
such that hf; = h; for all i € I.

Call /4 an extension of the homoms. #;.
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Note. Follows: G is generated by ;< fi(Gi).
Let Gy be the subgroup of G generated by this set.
Take H = G and h; = f;, viewed as a mapping to Gy, in the defn.
3 an extn to a homomorphism f : G— Gy.
Let e : Go — G be the inclusion map. Then ef and idg : G— G are both
extns of the maps f; : G;— G. Since the extn is unique, ef = idg, so e is
onto, hence G = Gy,.
Uniqueness. Let f : G;— G’ be homomorphisms such that f/o; = fja;
for all i, j € 1, and if h; : G;— H are homomorphisms with h;0;; = h;Q;
for all i, j € I, then there is a unique homomorphism /4’ : G’ — H such that
W fl =hjforalliel

In the defn, take /; = f/, to obtain a homomorphism f : G — G’ such that
ffi = f] for all i. Interchanging G and G, get /' : G’ — G such that f'f/ =
f; for all i. Take H = G, h; = f; in the defn; both f’f and idg : G— G are
extensions of the f; : G;— G. Since the extension is unique, f'f = idg.
Interchanging G and G, ff’ =idg, so f and f’ are inverse isomorphisms.

Existence. let (X; | R;) be a presn of G;, with X;NX; =0 fori # j. LetY be
a set of generators for A and, foreachy €Y, i € I let a; , be a word in Xl.jEl
representing ¢;(y). Let

S={aiyajy |yeY,i,jel, i#j}.

Let G be the group with presentation (U;c; Xi | Uiy RiUS). Then G is the

free product with amalgamation. There is an obvious mapping X; — G,
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which (by defn of a presentation) induces a homomorphism f; : Gi— G.
The existence and uniqueness of the mapping 4 in the definition follows by
defn of a presentation.

If G is the free product of {G; | i € I} with A amalgamated, write G =
%, Gi.
In case of two groups {G1, G}, write G = G| *4 G».
Example. let G| = (x), G, = (y), A = (a) inf. cyclic.
ay:a— x>, o ary.
G = G %4 G, has presentation (x,y | x> = y?), after Tietze transformations.

Structure of free prods with amalgamation.
Let G =%, G; via ¢; : A — G, i € 1. To represent elts of G by certain
words, identify A with o;(A) and assume G; NG = A for i # j.

Define a word to be a finite sequence

W= (g17'--7gk)7

where k > 1 and g; € G;,...,gk € Gj, for some iy,... iy €1.

Elt. of G represented by wis fi (g1) ... fi,(8k)-

Since ;¢ fi(G;) generates G and the f; are homoms, every element of G is
repd by some word.

Definition. Let w = (g1,...,8) be a word with g; € G;;, 1 < j <k. Then
w is reduced if

(D) ij#ijpfor1 <j<k—1;

(2) gjgAforl < j<k,unlessk=1.

If (1) fails, can replace w by (g1,...,8;8j+1,---,8k), representing the
same element of G.
If (2) fails, can also replace w by a shorter word.
Hence every elt of G is represented by a reduced word (take a word of
shortest length representing it).

For every i € I, choose a transversal 7; for the cosets {Ax | x € G;}, with
1 € T;. Let g € G be represented by the reduced word (g,...,g;) with
gj € Gi;.

Can write:

gk = aily (ar €A, r €T;,)

8k—10k = Af—1Tk—1 (ar—1 €A, i1 €T, )

g1a2 = ain (a) €A, rleTil)-



3

-1 —1 .
Then g1 = airia, ', g2 = axray ,...,8k = axry and (ay,ri,r2,...,1y) is a
word representing g.

Definition. A normal word is a word (a,ry,...,r;) where a € A, k > 0,
ri € T, \{1} forsomei; €I (1< j<k),andij#ij 1 forl1<j<k—1.

Thus any element of G is represented by a normal word.
(a € A is represented by the normal word (a).)

Theorem 2.1 (Normal Form Theorem). Any element of G is represented by
a unique normal word.

Proof. Need to show uniqueness. Let W = set of normal words.
Will define an action of G on W, equivalently, a homom. 4 : G— S(W)
(symmetric group on W).
By defn of G, suffices to define, for i € I, a homom. %; : G;— S(W) with
hio; = /’leCj for all i, jel.
So with the identifications made, need homomorphisms /; which agree on
A.

Let Wi ={(L,r1,....re) EW | n ¢T;} (€.
Define 6; : G; x W; — W as follows. If g € G;, write g = ar, where r € T;,
a € A. Then

0i(g, (L,ry,...,rx)) = {(a,r,rl,...,rk) ifr#1 (e g&A

(a,riy...,r) if r=1.

0; is bijective (exercise).

Now G; acts on G; x W; by left mult. on the first co-ordinate, giving a
homomorphism A; : G; — S(G; x W;), where A;(g)(x,w) = (gx,w).
Set hi(g) = 6;Ai(g) Ol._l. Since A; is a homomorphism, so is A;.
IfacA,

hi(a)(d ,ry,...,r¢) = (ad',r1,...,1%)

and RHS is independent of i.
Thus the 4; define a homomorphism 4 : G— S(W).

Let g € G be represented by the normal word w = (a,ry,...,ry). Then
h(g)(1) = w (induction on k) so w is uniquely determined by g. O

Corollary 2.2. (1) The homomorphisms f; are injective;
(2) no reduced word of length greater than 1 represents the identity element

of G.

Proof. (1) If fi(g) = 1, write g = ar with a € A, r € T;. Then the normal
word (a,r) (or (a), if r=1) represents 1,soa=r=1,ie g = 1.
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(2) If a reduced word has length k > 1, procedure above gives a normal
word of length k4 1 representing same elt of G, which cannot be 1 by
Theorem 2.1. O

By Cor. 2.2(1), the f; can be suppressed.

Important special case: A = {1}.

G is called the free product of the family {G; | i € I}, written G = X ,; G;
(or G = G * G, for two groups).

A reduced word is a word (g1,...,8x) such that g; € G;;, g;j # 1 unless
k=1,andi; #ij g forl1 <j<k—1.

Normal Form Theorem simplifies: every element of G is represented by a
unique reduced word. Also, the G; embed in G.

Defining property simplifies to: given any collection of homomorphisms
hi : G;— H, there is a unique extension to a homomorphism 4 : G— H.
Presn used to show existence simplifies.

Let (X; | R;) be a presentation of G; (via some mapping which will be
suppressed), with X; N X; = 0 for i # j. Then 3, ., G; has presentation
(Uier Xi | UierRi)-

[This is obtained from the presentation above by taking the empty presen-
tation of the trivial group, with no generators and no relations. ]

iel

Examples. (1) (x,y | x> = 1, y> = 1) is a presentation of C, x C;, the infinite
dihedral group. Has D,, as a homomorphic image.

(2) C; % C; has presentation (x,y | x> = 1, y3 = 1). This group is called the
modular group, and is isomorphic to PSL,(Z).

(3) F free with basis {x; | i € I'}; then F = >, ,(x;), a free product of infi-
nite cyclic groups.

(4) Trefoil knot K; group of the knot, 7r; (R® — K) has presn
(a,b | aba = bab)

Tietze (x,y | x> = y®) (previous example).

YaY,

HNN-extensions. Suppose B, C are subgroups of a group A and y: B—C
1S an isomorphism.

transf.



Let G have presentation ({t} UX | R{ UR,), where
X = {x|geA}, 1¢X
R, = {xgxhxghl | g,h EA}

Jahomom. f:A — G given by a — x,; will show f is injective.

Definition. The group G is called an HNN-extension with base A, associ-
ated pair of subgroups B, C and stable letter t.

Presn is often abbreviated to (t,A | rel(A),tBt~! = y(B)) or just
(t,A|rel(A),tBt~1 = C).

More generally, Let (Y | S) be a presentation of A, let {b; | j € J} be a set of

words in Y *! representing a set of generators for B, and let ¢ j be a word rep-
resenting ¥(b;) [more accurately, ¥(the generator represented by b;)]. Then

({tyuy | SU{th;t ' =c;| jed})
is also a presentation of G. (Exercise.)
Example. (Baumslag-Solitar) (x,y | xy’x~! = y?) is an HNN-extension,
base an infinite cyclic group A = (y), stable letter x, assoc.pair (y), ().
(Famous example of a non-Hopfian group.)
In general, G is generated by f(A)U{¢}, so every element of G is repre-
sented in an obvious way by a word

(g()atelvglvtez;gZJ"'7t8kagk)
where k > 0,e¢; =+l and g; € A for 0 <i <k.

Definition. Such a word is reduced if it has no part of the form 7, b,+~! with
beBort ! ¢t withceC.

Any element of G is represented by a reduced word (take a word of min-
imal length representing it).

Choose a transversal Tp for the cosets {Bg | g € A} and a transversal T¢
for the cosets {Cg | g € A}, with 1 € Tp, T.

Definition. A normal word is a reduced word (go,2°!,r,t2,rp, ..., t% 1),
where go €A, ri€ Tpife;=1and r; € Te if e; = —1.

Suppose (go,°!,81,1°%,82,-..,t%,g;) is a reduced word with k > 1. If
er = 1, write gy = br with b € B, r € Tg. Then

/
(g()?tel?ghtezngv-~-7gk717tek7r)



where g, = gx—1Y(b), represents the same element of G.
If e, = —1, write g = cr with ¢ € C and r € T¢.. Then

/
(goatelaglatez7g27'~'7gk717tek7r)

where g} | = gr_17 ' (c), represents the same element of G.
Repetition leads to a normal word representing the same element of G.

Theorem 2.3. (Normal Form Theorem.) Every element of G is represented
by a unique normal word.

Proof. Omitted. 0

Corollary 2.4. (1) The homomorphism f : A— G is injective;
(2) (Britton’s Lemma) no reduced word (go,t!,81,t2,82,...,t%, gx) with
k > 0 represents the identity element of G. 0

More generally, given A and a family ¥; : B;—C; (i € I) of isomor-
phisms, where B;, C; are subgroups of A, we can form the HNN-extension
with presentation (in abbreviated form)

<l,' (i c 1)7 G | rel(G), ll'B,'l‘l-_l = ’)/,'(Bi) (i c I)>
There are generalisations of the Normal Form Theorem and its corollary.

An application.

Theorem 2.5. Any countable group can be embedded in a 2-generator
group.

Proof. Let G ={go,81,42,---}, where go = 1.

Let F be free with basis {a,b}.

(b"ab™ (n > 0)) is a free subgp of F' with the given elts as basis. Similarly
(@"ba™ (n > 0)) is a free subgp. (See Exercise 2, Sheet 1.)

Claim: in GxF, (g,a"ba™" (n > 0)) is free with basis the given elts.
For the homoms. G — F, g+— 1 and idr : F — F have an extn to a
homom. f:Gx+F — F. If w is repd by a non-empty reduced word in
{gna"ba™" | (n > 0)}il of positive length, then f(w) is repd by a corre-
sponding reduced word in {a"ba™" | (n > O)}il, so f(w) # 1, hence w # 1.
Claim follows (see Exercise 1, Sheet 1).

Can form HNN-extn

H=(t,GxF |rel(G*F),t(b"ab ")t ' = g,a"ba™" (n > 0)).
Then G< G+F <H, g, € (t,a,b),and (n=0)tat "' =b,s0o H= (t,a). O



