2. Two Basic Constructions

Free Products with amalgamation. Let $\left\{G_{i} \mid i \in I\right\}$ be a family of gps, A a gp and $\alpha_{i}: A \longrightarrow G_{i}$ a monomorphism, $\forall i \in I$. A gp G is the free product of the G_{i} with A amalgamated (via the α_{i}) if \exists homomorphisms $f_{i}: G_{i} \longrightarrow G$ such that $f_{i} \alpha_{i}=f_{j} \alpha_{j} \forall i, j \in I$, and if $h_{i}: G_{i} \longrightarrow H$ are homomorphisms with $h_{i} \alpha_{i}=h_{j} \alpha_{j}$ for all $i, j \in I$, then there is a unique homomorphism $h: G \longrightarrow H$ such that $h f_{i}=h_{i}$ for all $i \in I$.

Call h an extension of the homoms. h_{i}.

Note. Follows: G is generated by $\bigcup_{i \in I} f_{i}\left(G_{i}\right)$.
Let G_{0} be the subgroup of G generated by this set.
Take $H=G_{0}$ and $h_{i}=f_{i}$, viewed as a mapping to G_{0}, in the defn.
\exists an extn to a homomorphism $f: G \longrightarrow G_{0}$.
Let $e: G_{0} \longrightarrow G$ be the inclusion map. Then ef and $\mathrm{id}_{G}: G \longrightarrow G$ are both extns of the maps $f_{i}: G_{i} \longrightarrow G$. Since the extn is unique, ef $=\mathrm{id}_{G}$, so e is onto, hence $G=G_{0}$.
Uniqueness. Let $f_{i}^{\prime}: G_{i} \longrightarrow G^{\prime}$ be homomorphisms such that $f_{i}^{\prime} \alpha_{i}=f_{j}^{\prime} \alpha_{j}$ for all $i, j \in I$, and if $h_{i}: G_{i} \longrightarrow H$ are homomorphisms with $h_{i} \alpha_{i}=h_{j} \alpha_{j}$ for all $i, j \in I$, then there is a unique homomorphism $h^{\prime}: G^{\prime} \longrightarrow H$ such that $h^{\prime} f_{i}^{\prime}=h_{i}$ for all $i \in I$.

In the defn, take $h_{i}=f_{i}^{\prime}$, to obtain a homomorphism $f: G \longrightarrow G^{\prime}$ such that $f f_{i}=f_{i}^{\prime}$ for all i. Interchanging G and G^{\prime}, get $f^{\prime}: G^{\prime} \longrightarrow G$ such that $f^{\prime} f_{i}^{\prime}=$ f_{i} for all i. Take $H=G, h_{i}=f_{i}$ in the defn; both $f^{\prime} f$ and $\mathrm{id}_{G}: G \longrightarrow G$ are extensions of the $f_{i}: G_{i} \longrightarrow G$. Since the extension is unique, $f^{\prime} f=\mathrm{id}_{G}$. Interchanging G and $G^{\prime}, f f^{\prime}=\operatorname{id}_{G^{\prime}}$, so f and f^{\prime} are inverse isomorphisms.
Existence. let $\left\langle X_{i} \mid R_{i}\right\rangle$ be a presn of G_{i}, with $X_{i} \cap X_{j}=\emptyset$ for $i \neq j$. Let Y be a set of generators for A and, for each $y \in Y, i \in I$ let $a_{i, y}$ be a word in $X_{i}^{ \pm 1}$ representing $\alpha_{i}(y)$. Let

$$
S=\left\{a_{i, y} a_{j, y}^{-1} \mid y \in Y, i, j \in I, i \neq j\right\} .
$$

Let G be the group with presentation $\left\langle\bigcup_{i \in I} X_{i} \mid \bigcup_{i \in I} R_{i} \cup S\right\rangle$. Then G is the free product with amalgamation. There is an obvious mapping $X_{i} \longrightarrow G$,
which (by defn of a presentation) induces a homomorphism $f_{i}: G_{i} \longrightarrow G$. The existence and uniqueness of the mapping h in the definition follows by defn of a presentation.

If G is the free product of $\left\{G_{i} \mid i \in I\right\}$ with A amalgamated, write $G=$ $*_{A} G_{i}$.
In case of two groups $\left\{G_{1}, G_{2}\right\}$, write $G=G_{1} *_{A} G_{2}$.
Example. let $G_{1}=\langle x\rangle, G_{2}=\langle y\rangle, A=\langle a\rangle$ inf. cyclic.
$\alpha_{1}: a \mapsto x^{2}, \alpha_{2}: a \mapsto y^{3}$.
$G=G_{1} *_{A} G_{2}$ has presentation $\left\langle x, y \mid x^{2}=y^{3}\right\rangle$, after Tietze transformations.

Structure of free prods with amalgamation.

Let $G=\mathcal{*}_{A} G_{i}$ via $\alpha_{i}: A \rightarrow G_{i}, i \in I$. To represent elts of G by certain words, identify A with $\alpha_{i}(A)$ and assume $G_{i} \cap G_{j}=A$ for $i \neq j$.

Define a word to be a finite sequence

$$
w=\left(g_{1}, \ldots, g_{k}\right)
$$

where $k \geq 1$ and $g_{1} \in G_{i_{1}}, \ldots, g_{k} \in G_{i_{k}}$ for some $i_{1}, \ldots, i_{k} \in I$.
Elt. of G represented by w is $f_{i_{1}}\left(g_{1}\right) \ldots f_{i_{k}}\left(g_{k}\right)$.
Since $\bigcup_{i \in I} f_{i}\left(G_{i}\right)$ generates G and the f_{i} are homoms, every element of G is repd by some word.

Definition. Let $w=\left(g_{1}, \ldots, g_{k}\right)$ be a word with $g_{j} \in G_{i_{j}}, 1 \leq j \leq k$. Then w is reduced if
(1) $i_{j} \neq i_{j+1}$ for $1 \leq j \leq k-1$;
(2) $g_{j} \notin A$ for $1 \leq j \leq k$, unless $k=1$.

If (1) fails, can replace w by $\left(g_{1}, \ldots, g_{j} g_{j+1}, \ldots, g_{k}\right)$, representing the same element of G.
If (2) fails, can also replace w by a shorter word.
Hence every elt of G is represented by a reduced word (take a word of shortest length representing it).

For every $i \in I$, choose a transversal T_{i} for the cosets $\left\{A x \mid x \in G_{i}\right\}$, with $1 \in T_{i}$. Let $g \in G$ be represented by the reduced word $\left(g_{1}, \ldots, g_{k}\right)$ with $g_{j} \in G_{i_{j}}$.

Can write:

$$
\begin{array}{crr}
g_{k} & =a_{k} r_{k} & \left(a_{k} \in A, r_{k} \in T_{i_{k}}\right) \\
g_{k-1} a_{k} & =a_{k-1} r_{k-1} & \left(a_{k-1} \in A, r_{k-1} \in T_{i_{k-1}}\right) \\
\vdots & \vdots \\
g_{1} a_{2} & =a_{1} r_{1} & \left(a_{1} \in A, r_{1} \in T_{i_{1}}\right) .
\end{array}
$$

Then $g_{1}=a_{1} r_{1} a_{2}^{-1}, g_{2}=a_{2} r_{2} a_{3}^{-1}, \ldots, g_{k}=a_{k} r_{k}$ and $\left(a_{1}, r_{1}, r_{2}, \ldots, r_{k}\right)$ is a word representing g.
Definition. A normal word is a word $\left(a, r_{1}, \ldots, r_{k}\right)$ where $a \in A, k \geq 0$, $r_{j} \in T_{i_{j}} \backslash\{1\}$ for some $i_{j} \in I(1 \leq j \leq k)$, and $i_{j} \neq i_{j+1}$ for $1 \leq j \leq k-1$.
Thus any element of G is represented by a normal word.
($a \in A$ is represented by the normal word (a).)

Theorem 2.1 (Normal Form Theorem). Any element of G is represented by a unique normal word.

Proof. Need to show uniqueness. Let $W=$ set of normal words.
Will define an action of G on W, equivalently, a homom. $h: G \longrightarrow S(W)$ (symmetric group on W).
By defn of G, suffices to define, for $i \in I$, a homom. $h_{i}: G_{i} \longrightarrow S(W)$ with $h_{i} \alpha_{i}=h_{j} \alpha_{j}$ for all $i, j \in I$.
So with the identifications made, need homomorphisms h_{i} which agree on A.

Let $W_{i}=\left\{\left(1, r_{1}, \ldots, r_{k}\right) \in W \mid r_{1} \notin T_{i}\right\} \quad(i \in I)$.
Define $\theta_{i}: G_{i} \times W_{i} \longrightarrow W$ as follows. If $g \in G_{i}$, write $g=a r$, where $r \in T_{i}$, $a \in A$. Then

$$
\theta_{i}\left(g,\left(1, r_{1}, \ldots, r_{k}\right)\right)= \begin{cases}\left(a, r, r_{1}, \ldots, r_{k}\right) & \text { if } r \neq 1 \text { (i.e. } g \notin A) \\ \left(a, r_{1}, \ldots, r_{k}\right) & \text { if } r=1 .\end{cases}
$$

θ_{i} is bijective (exercise).
Now G_{i} acts on $G_{i} \times W_{i}$ by left mult. on the first co-ordinate, giving a homomorphism $\lambda_{i}: G_{i} \longrightarrow S\left(G_{i} \times W_{i}\right)$, where $\lambda_{i}(g)(x, w)=(g x, w)$.
Set $h_{i}(g)=\theta_{i} \lambda_{i}(g) \theta_{i}^{-1}$. Since λ_{i} is a homomorphism, so is h_{i}.
If $a \in A$,

$$
h_{i}(a)\left(a^{\prime}, r_{1}, \ldots, r_{k}\right)=\left(a a^{\prime}, r_{1}, \ldots, r_{k}\right)
$$

and RHS is independent of i.
Thus the h_{i} define a homomorphism $h: G \longrightarrow S(W)$.
Let $g \in G$ be represented by the normal word $w=\left(a, r_{1}, \ldots, r_{k}\right)$. Then $h(g)(1)=w$ (induction on k) so w is uniquely determined by g.

Corollary 2.2. (1) The homomorphisms f_{i} are injective;
(2) no reduced word of length greater than 1 represents the identity element of G.

Proof. (1) If $f_{i}(g)=1$, write $g=a r$ with $a \in A, r \in T_{i}$. Then the normal word (a, r) (or (a), if $r=1$) represents 1 , so $a=r=1$, ie $g=1$.
(2) If a reduced word has length $k>1$, procedure above gives a normal word of length $k+1$ representing same elt of G, which cannot be 1 by Theorem 2.1.

By Cor. 2.2(1), the f_{i} can be suppressed.
Important special case: $A=\{1\}$.
G is called the free product of the family $\left\{G_{i} \mid i \in I\right\}$, written $G=*_{i \in I} G_{i}$ (or $G=G_{1} * G_{2}$ for two groups).
A reduced word is a word $\left(g_{1}, \ldots, g_{k}\right)$ such that $g_{j} \in G_{i_{j}}, g_{j} \neq 1$ unless $k=1$, and $i_{j} \neq i_{j+1}$ for $1 \leq j \leq k-1$.
Normal Form Theorem simplifies: every element of G is represented by a unique reduced word. Also, the G_{i} embed in G.
Defining property simplifies to: given any collection of homomorphisms $h_{i}: G_{i} \longrightarrow H$, there is a unique extension to a homomorphism $h: G \longrightarrow H$. Presn used to show existence simplifies.
Let $\left\langle X_{i} \mid R_{i}\right\rangle$ be a presentation of G_{i} (via some mapping which will be suppressed), with $X_{i} \cap X_{j}=\emptyset$ for $i \neq j$. Then $*_{i \in I} G_{i}$ has presentation $\left\langle\bigcup_{i \in I} X_{i} \mid \bigcup_{i \in I} R_{i}\right\rangle$.
[This is obtained from the presentation above by taking the empty presentation of the trivial group, with no generators and no relations.]
Examples. (1) $\left\langle x, y \mid x^{2}=1, y^{2}=1\right\rangle$ is a presentation of $C_{2} * C_{2}$, the infinite dihedral group. Has D_{n} as a homomorphic image.
(2) $C_{2} * C_{3}$ has presentation $\left\langle x, y \mid x^{2}=1, y^{3}=1\right\rangle$. This group is called the modular group, and is isomorphic to $\mathrm{PSL}_{2}(\mathbb{Z})$.
(3) F free with basis $\left\{x_{i} \mid i \in I\right\}$; then $F=*_{i \in I}\left\langle x_{i}\right\rangle$, a free product of infinite cyclic groups.
(4) Trefoil knot K; group of the knot, $\pi_{1}\left(\mathbb{R}^{3}-K\right)$ has presn

$$
\langle a, b \mid a b a=b a b\rangle
$$

$\xrightarrow[\text { transf. }]{\text { Tietze }}\left\langle x, y \mid x^{2}=y^{3}\right\rangle$ (previous example).

HNN-extensions. Suppose B, C are subgroups of a group A and $\gamma: B \longrightarrow C$ is an isomorphism.

Let G have presentation $\left\langle\{t\} \cup X \mid R_{1} \cup R_{2}\right\rangle$, where

$$
\begin{aligned}
X & =\left\{x_{g} \mid g \in A\right\}, \quad t \notin X \\
R_{1} & =\left\{x_{g} x_{h} x_{g h}^{-1} \mid g, h \in A\right\} \\
R_{2} & =\left\{t x_{b} t^{-1} x_{\gamma(b)}^{-1} \mid b \in B\right\} .
\end{aligned}
$$

\exists a homom. $f: A \rightarrow G$ given by $a \mapsto x_{a}$; will show f is injective.
Definition. The group G is called an HNN-extension with base A, associated pair of subgroups B, C and stable letter t.
Presn is often abbreviated to $\left\langle t, A \mid \operatorname{rel}(A), t B t^{-1}=\gamma(B)\right\rangle$ or just

$$
\left\langle t, A \mid \operatorname{rel}(A), t B t^{-1}=C\right\rangle
$$

More generally, Let $\langle Y \mid S\rangle$ be a presentation of A, let $\left\{b_{j} \mid j \in J\right\}$ be a set of words in $Y^{ \pm 1}$ representing a set of generators for B, and let c_{j} be a word representing $\gamma\left(b_{j}\right)$ [more accurately, $\gamma\left(\right.$ the generator represented by $\left.\left.b_{j}\right)\right]$. Then

$$
\left\langle\{t\} \cup Y \mid S \cup\left\{t b_{j} t^{-1}=c_{j} \mid j \in J\right\}\right\rangle
$$

is also a presentation of G. (Exercise.)
Example. (Baumslag-Solitar) $\left\langle x, y \mid x y^{2} x^{-1}=y^{3}\right\rangle$ is an HNN-extension, base an infinite cyclic group $A=\langle y\rangle$, stable letter x, assoc.pair $\left\langle y^{2}\right\rangle,\left\langle y^{3}\right\rangle$.
(Famous example of a non-Hopfian group.)
In general, G is generated by $f(A) \cup\{t\}$, so every element of G is represented in an obvious way by a word

$$
\left(g_{0}, t^{e_{1}}, g_{1}, t^{e_{2}}, g_{2}, \ldots, t^{e_{k}}, g_{k}\right)
$$

where $k \geq 0, e_{i}= \pm 1$ and $g_{i} \in A$ for $0 \leq i \leq k$.
Definition. Such a word is reduced if it has no part of the form t, b, t^{-1} with $b \in B$ or t^{-1}, c, t with $c \in C$.

Any element of G is represented by a reduced word (take a word of minimal length representing it).

Choose a transversal T_{B} for the cosets $\{B g \mid g \in A\}$ and a transversal T_{C} for the cosets $\{C g \mid g \in A\}$, with $1 \in T_{B}, T_{C}$.

Definition. A normal word is a reduced word $\left(g_{0}, t^{e_{1}}, r_{1}, t^{e_{2}}, r_{2}, \ldots, t^{e_{k}}, r_{k}\right)$, where $g_{0} \in A, r_{i} \in T_{B}$ if $e_{i}=1$ and $r_{i} \in T_{C}$ if $e_{i}=-1$.

Suppose $\left(g_{0}, t^{e_{1}}, g_{1}, t^{e_{2}}, g_{2}, \ldots, t^{e_{k}}, g_{k}\right)$ is a reduced word with $k \geq 1$. If $e_{k}=1$, write $g_{k}=b r$ with $b \in B, r \in T_{B}$. Then

$$
\left(g_{0}, t^{e_{1}}, g_{1}, t^{e_{2}}, g_{2}, \ldots, g_{k-1}^{\prime}, t^{e_{k}}, r\right)
$$

where $g_{k-1}^{\prime}=g_{k-1} \gamma(b)$, represents the same element of G.
If $e_{k}=-1$, write $g_{k}=c r$ with $c \in C$ and $r \in T_{C}$. Then

$$
\left(g_{0}, t^{e_{1}}, g_{1}, t^{e_{2}}, g_{2}, \ldots, g_{k-1}^{\prime}, t^{e_{k}}, r\right)
$$

where $g_{k-1}^{\prime}=g_{k-1} \gamma^{-1}(c)$, represents the same element of G.
Repetition leads to a normal word representing the same element of G.
Theorem 2.3. (Normal Form Theorem.) Every element of G is represented by a unique normal word.

Proof. Omitted.
Corollary 2.4. (1) The homomorphism $f: A \longrightarrow G$ is injective;
(2) (Britton's Lemma) no reduced word $\left(g_{0}, t^{e_{1}}, g_{1}, t^{e_{2}}, g_{2}, \ldots, t^{e_{k}}, g_{k}\right)$ with $k>0$ represents the identity element of G.

More generally, given A and a family $\gamma_{i}: B_{i} \longrightarrow C_{i}(i \in I)$ of isomorphisms, where B_{i}, C_{i} are subgroups of A, we can form the HNN-extension with presentation (in abbreviated form)

$$
\left\langle t_{i}(i \in I), G \mid \operatorname{rel}(G), t_{i} B_{i} t_{i}^{-1}=\gamma_{i}\left(B_{i}\right)(i \in I)\right\rangle .
$$

There are generalisations of the Normal Form Theorem and its corollary.

An application.

Theorem 2.5. Any countable group can be embedded in a 2-generator group.

Proof. Let $G=\left\{g_{0}, g_{1}, g_{2}, \ldots\right\}$, where $g_{0}=1$.
Let F be free with basis $\{a, b\}$.
$\left\langle b^{n} a b^{-n}(n \geq 0)\right\rangle$ is a free subgp of F with the given elts as basis. Similarly $\left\langle a^{n} b a^{-n}(n \geq 0)\right\rangle$ is a free subgp. (See Exercise 2, Sheet 1.)
Claim: in $G * F,\left\langle g_{n} a^{n} b a^{-n}(n \geq 0)\right\rangle$ is free with basis the given elts.
For the homoms. $\quad G \rightarrow F, g \mapsto 1$ and $\operatorname{id}_{F}: F \rightarrow F$ have an extn to a homom. $f: G * F \rightarrow F$. If w is repd by a non-empty reduced word in $\left\{g_{n} a^{n} b a^{-n} \mid(n \geq 0)\right\}^{ \pm 1}$ of positive length, then $f(w)$ is repd by a corresponding reduced word in $\left\{a^{n} b a^{-n} \mid(n \geq 0)\right\}^{ \pm 1}$, so $f(w) \neq 1$, hence $w \neq 1$. Claim follows (see Exercise 1, Sheet 1).
Can form HNN-extn

$$
H=\left\langle t, G * F \mid \operatorname{rel}(G * F), t\left(b^{n} a b^{-n}\right) t^{-1}=g_{n} a^{n} b a^{-n}(n \geq 0)\right\rangle
$$

Then $G \leq G * F \leq H, g_{n} \in\langle t, a, b\rangle$, and $(n=0) t a t^{-1}=b$, so $H=\langle t, a\rangle$.

