
Probability Models. Solutions to Problem Sheet 9.

1. fX,Y (x, y) = 1 for 0 < x < 1 and 0 < y < 1. Let Z = X+Y and U = X. Then X = U
and Y = Z − U . Hence

fU,Z(u, z) = 1×
∣∣∣∣∣∣∣∣ 1 0

−1 1

∣∣∣∣∣∣∣∣ = 1

The ranges are 0 < u < 1 and 0 < z − u < 1. Since U ≡ X we can write this as
fX,Z(x, z) = 1 for 0 < x < 1 and z − 1 < x < z. (Suggestion: for better understanding of
what follows draw a picture of the domain on the Z,X plain where these inequalities are
satisfied.)

Either: Consider different ranges of Z, (i) 0 < z ≤ 1; (ii) 1 < z < 2.

If 0 < z ≤ 1 then 0 < x < z and hence fZ(z) =
∫ z

0
dx = z and so fX|Z(x|z) = 1

z
for

0 < x < z so that X|Z = z ∼ U(0, z) for 0 < z < 1.

If 1 < z < 2 then z−1 < x < 1 and hence fZ(z) =
∫ 1

z−1
dx = 2−z and so fX|Z(x|z) = 1

2−z

for z − 1 < x < 1 so that X|Z = z ∼ U(z − 1, 1) for 1 < z < 2.

Or: Write the ranges as max(0, z − 1) < x < min(1, z) and 0 < z < 2.

Then fZ(z) = min(1, z)−max(0, z − 1) for 0 < z < 2 which can be written as fZ(z) = z
for 0 < z ≤ 1 and fZ(z) = 2− z for 1 < z < 2.

Hence fX|Z(x|z) = 1
min(1,z)−max(0,z−1)

for max(0, z − 1) < x < min(1, z) so that X|Z =

z ∼ U(max(0, z − 1),min(1, z)). This may also be written as: when 0 < z ≤ 1 then
fX|Z(x|z) = 1

z
for 0 < x < z (so X|Z = z ∼ U(0, z)) and when 1 < z < 2 then

fX|Z(x|z) = 1
2−z

for z − 1 < x < 1 (so X|Z = z ∼ U(z − 1, 1)).

2. (a) fU(u) = θe−θ(u−α) for α < u < ∞. Hence V = U − α has inverse U = V + α and
fV (v) = θe−θv × |1| = θe−θv for v > 0 i.e. V ∼ Exp(θ). Therefore E[U ] = E[V + α] =
E[V ] + α = 1

θ
+ α and V ar(U) = V ar(V + α) = V ar(V ) = 1

θ2
. (Only statement of result

needed)

(b) (i) fX,Y (x, y) = 2θ2e−θ(x+y) for 0 < x < y < ∞. Hence

fX(x) =

∫ ∞

x

2θ2e−θ(x+y)dy =
[
−2θe−θ(x+y)

]y=∞
y=x

= 2θe−2θx

for 0 < x < ∞. Therefore X ∼ Exp(2θ) and so E[X] = 1
2θ

and V ar(X) = 1
4θ2

.
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(ii) Then for x > 0, fY |X(y|x) =

{
2θ2e−θ(x+y)

2θe−2θx = θe−θ(y−x) if x < y < ∞
0 otherwise .

(iii) This is the same form of p.d.f. as in part (a) with α = x. Hence E[Y |X] = 1
θ
+X

and V ar(Y |X) = 1
θ2
. Therefore

E[Y ] = E[E[Y |X]] = E

[
1

θ
+X

]
=

1

θ
+

1

2θ
=

3

2θ

V ar(Y ) = E[V ar(Y |X)] + V ar(E[Y |X]) = E

[
1

θ2

]
+ V ar

(
1

θ
+X

)
=

1

θ2
+ V ar(X) =

1

θ2
+

1

4θ2
=

5

4θ2

(iv)

E[XY ] = E[XE[Y |X]] = E

[
X

(
1

θ
+X

)]
=

1

θ
E[X] + (V ar(X) + (E[X])2)

=
1

2θ2
+

1

4θ2
+

(
1

2θ

)2

=
1

θ2

Hence Cov(X,Y ) = 1
θ2

−
(

1
2θ

) (
3
2θ

)
= 1

4θ2
. Therefore

ρ(X,Y ) =
1

4θ2√
1

4θ2
× 5

4θ2

=
1√
5

3. (a) Markov’s inequality for a non-negative r.v. X with mean µ states that for any
h > 0, P (X ≥ h) ≤ µ

h
. So here we simply take h = µ+ 2σ to obtain

P (X ≥ µ+ 2σ) ≤ µ

µ+ 2σ

So the upper bound for P (X ≥ µ+ 2σ) is µ
µ+2σ

.

(b) If X has mean µ and variance σ2 then Chebyshev’s inequality states that, for any
h > 0,
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P (|X − µ| ≥ h) ≤ σ2

h2

So we just need to take h = 2σ. Then Chebyshev’s inequality states that

P (|X − µ)| ≥ 2σ) ≤ σ2

(2σ)2
=

1

4

So the upper bound for P (|X − µ| ≥ 2σ) is 1
4
.

If X ∼ Exp(θ), then µ = 1
θ
and σ2 = 1

θ2
. Then:

(a) Markov’s inequality is just P
(
X ≥ 3

θ

)
≤ 1

3
. The exact probability is just

P

(
X ≥ 3

θ

)
=

∫ ∞

3
θ

θe−θxdx = e−3 = 0.04979

(b) Chebyshev’s inequality is just P
(∣∣X − 1

θ

∣∣ ≥ 2
θ

)
≤ 1

4
The exact probability is just

P

(∣∣∣∣X − 1

θ

∣∣∣∣ ≥ 2

θ

)
= P

(
X ≥ 3

θ

)
+ P

(
X ≤ −1

θ

)
=

∫ ∞

3
θ

θe−θxdx = e−3 = 0.04979
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