
Probability Models - Notes 5

Continuous Random Variables

Definition. A random variable X is said to be a continuous random variable if there is a function
fX(x) (the probability density function or p.d.f.) mapping the real line ℜ into [0,∞) such that
for any open interval (a,b), P(X ∈ (a,b)) = P(a < X < b) =

∫ b
a fX(x)dx.

From the axioms of probability this gives:

(i)
∫ ∞
−∞ fX(x)dx = 1.

(ii) The cumulative distribution function FX(x)=P(X ≤ x)=
∫ x
−∞ fX(u)du. FX(x) is a monotone

increasing function of x with FX(−∞) = 0 and FX(∞) = 1.

(iii) P(X = x) = 0 for all real x.

From calculus, fX(x) =
dFX (x)

dx for all points for which the p.d.f. is continuous and hence the
c.d.f. is differentiable.

Expectations, Moments and the Moment Generating Functions

Definition. The expectation of a continuous r. v. X with p.d.f. fX(x) is defined by

E(X) =
∫ ∞

−∞
x fX(x)dx if

∫ ∞

−∞
|x| fX(x)dx < ∞.

The other terms for expectation of X used in the mathematical literature (and in these notes) are:
the mathematical expectation of X ; the mean value of X (or just the mean); the first moment of
X .

It can be shown that if
∫ ∞
−∞ |g(x)| fX(x)dx < ∞, then

E[g(X)] =
∫ ∞

−∞
g(x) fX(x)dx,

where g is a function taking real values and defined on the set of all possible values of X .

The raw moments are moments about the origin. The kth raw moment is µk = E[Xk. Note that
µ1 is just the mean µ.

The moment generating function (m.g.f.) of a r. v. X is defined by =0 MX(t) = E[etX ].

Note that for a discrete random variable MX(t) = GX(et).

For a continuous random variable MX(t) =
∫ ∞
−∞ etx fX(x)dx.

Properties of the M.G.F.

(i) E(Xk) = M(k)
X (0) = dkMX (t)

dtk |t=0.

1



We thus state that the moments (also called raw moments) µk = E[Xk] = M(k)
X (0), where M(k)

X (t)
denotes the kth derivative of MX(t) with respect to t.

Explanation. dkMX (t)
dtk = dk

dtk E[etX ] = E[XketX ]. If we set t = 0 the result follows.

(ii) Note that if you expand MX(t) in a power series in t you obtain MX(t) = ∑∞
r=0

µrtr

r! . So the
m.g.f. generates the raw moments.

(iii) The m.g.f. determines the distribution.

Other properties (similar to those for the p.g.f.) will be considered later once we have looked at
joint distributions.

Standard Continuous Distributions

Uniform Distribution. All intervals (within the support of the p.d.f.) of equal length have
equal probability of occurrence. Arises in simulation. Simulated values {u j} from a uniform
distribution on (0,1) can be transformed to give simulated values {x j} of a continuous r.v. X
with c.d.f. F by taking x j = F−1(u j).

X ∼U(a,b) if

fX(x) =

{
1

(b−a) if a < x < b
0 otherwise

E[X ] = a+b
2 and Var(X) = (b−a)2

12 .

MX(t) = ebt−eat

t(b−a) . This exists for all real t.

Exponential Distribution. Used for the time till the first event if events occur randomly and
independently in time at constant rate. Used as a survival distribution for an item which remains
as ’good as new’ during its lifetime.

X ∼ Exp(θ) if

fX(x) =
{

θe−θx if 0 < x < ∞
0 otherwise

E[X ] = 1
θ and Var(X) = 1

θ2 .

MX(t) =
(
1− t

θ
)−1. This exists for t < θ.

Gamma Distribution. Exponential is special case. Used as a survival distribution. When
α = n, gives the time until the nth event when events occur randomly, independently, and the
time-intervals between events are exponentially distributed.
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X ∼ Gamma(θ,α) if

fX(x) =

{
θαxα−1e−θx

Γ(α) if 0 < x < ∞
0 otherwise

The Gamma function is defined for α > 0 by Γ(α) =
∫ ∞

0 xα−1e−xdx. It is then simple to show
that the p.d.f. integrates to one by making a simple change of variable (y = θx) in the integral.

It is easily shown using integration by parts that Γ(α+ 1) = αΓ(α). Therefore when n is a
positive integer Γ(n) = (n−1)!.

E[X ] = α
θ and Var(X) = α

θ2 .

MX(t) =
(
1− t

θ
)−α. This exists for t < θ.

Note: The Chi-squared distribution (X ∼ χ2
n) is just the gamma distribution with θ = 1/2 and

α = n/2. This is an important distribution in normal sampling theory.

Normal Distribution. Important in statistical modelling where normal error models are com-
monly used. It also serves as a large sample approximation to the distribution of efficient esti-
mators in statistics.

X ∼ N(µ,σ2) if

fX(x) =
1√
2πσ

e−
(x−µ)2

2σ2

To show that the p.d.f. integrates to 1 by a simple change of variable in the integral to z =
(x−µ)/σ we just need to show that

∫ ∞
−∞ e−z2/2 =

√
2π. We show this at the end of Notes 5.

E[X ] = µ and Var(X) = σ2.

MX(t) = eµt+σ2t2
2 . This exists for all t.

Example deriving the m.g.f. and finding moments

X ∼ N(µ,σ2).

MX(t) =
∫ ∞

−∞
etx 1√

2πσ2
e−(x−µ)2/(2σ2)dx

In the integral make the change of variable to y = (x−µ)/σ. Then

MX(t) =
∫ ∞

−∞

1√
2π

e−y2/2+t(µ+σy)dy = eµt+σ2t2/2
∫ ∞

−∞

1√
2π

e−(y−σt)2/2dy = eµt+σ2t2/2
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Finding E[X ] and E[X2]. Differentiating gives M
′
X(t) = (µ+σ2t)eµt+σ2t2/2 and

M(2)
X (t) = (σ2)eµt+σ2t2/2 +(µ+σ2t)2eµt+σ2t2/2

Therefore E[X ] = M
′
X(0) = µ and E[X2] = M(2)

X (0) = σ2 +µ2.

Transformations of random variables.

Theorem. Let the interval A be the support of the p.d.f. fX(x). If g is a 1:1 continuous map
from A to an interval B with differentiable inverse, then the r.v. Y = g(X) has p.d.f.

fY (y) = fX(g−1(y))
∣∣∣∣dg−1(y)

dy

∣∣∣∣
Proof. This is easily shown using equivalent events. The function g(x) will either be (a) strictly
monotone increasing; or (b) strictly monotone decreasing. We consider each case separately.

Case (a)
FY (y) = P(Y ≤ y) = P(g(X)≤ y) = P(X ≤ g−1(y)) = FX(g−1(y))

Differentiating and noting that dg−1(y)
dy > 0 gives

fY (y) = fX(g−1(y))× dg−1(y)
dy

= fX(g−1(y))
∣∣∣∣dg−1(y)

dy

∣∣∣∣
Case (b)

FY (y) = P(Y ≤ y) = P(g(X)≤ y) = P(X ≥ g−1(y)) = 1−FX(g−1(y))

Differentiating and noting that dg−1(y)
dy < 0 gives

fY (y) =− fX(g−1(y))× dg−1(y)
dy

= fX(g−1(y))
∣∣∣∣dg−1(y)

dy

∣∣∣∣ . 2

Example X ∼ N(µ,σ2). Let Y = X−µ
σ . Then g−1(y) = µ+σy. Therefore dg−1(y)

dy = σ. Hence

fY (y) = fX(g−1(y))
∣∣∣∣dg−1(y)

dy

∣∣∣∣= 1√
2πσ2

e−y2/2 ×σ =
1√
2π

e−y2/2

The support for the p.d.f. X , (−∞,∞), is mapped onto (−∞,∞) so this is the support of the p.d.f.
for Y . Therefore Y ∼ N(0,1).
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Transformations which are not 1:1. You can still find the c.d.f. for the transformed variable
by writing FY (y) as an equivalent event in terms of X .

Example. X ∼ N(0,1) and Y = X2. The support for the p.d.f. of Y is [0,∞). For y > 0,

FY (y) = P(X2 ≤ y) = P(−√
y ≤ X ≤√

y) = FX(
√

y)−FX(−
√

y)

Differentiating with respect to y gives, for y > 0,

fY (y) = fX(
√

y)
1

2
√

y
− fX(−

√
y)

−1
2
√

y
=

y−1/2e−y/2

21/2√π

This is just the p.d.f. for a χ2
1. Note that this implies that Γ(1/2) =

√
π because the constant

in the p.d.f. is determined by the function of y and the range (suppport of the p.d.f.) since the
p.d.f. integrates to one.

Note for the normal p.d.f.

Let A =
∫ ∞
−∞ e−z2/2dz. Note that A > 0. Then

A2 =
∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)/2dxdy

Making the change to polar co-ordinates (Calculus 2) gives

A2 =
∫ 2π

0

∫ ∞

0
e−r2/2rdrdθ = 2π

Hence A =
√

2π.

5


