
Probability Models - Notes2

Conditional probability

Definition If A and B are events and P(B) > 0 then we define the conditional probability of A
given B to be

P(A|B) = P(A∩B)
P(B)

Definition Events B1, ...,Bn are said to partition the sample space S if ∪n
i=1Bi = S and Bi∩B j =

ϕ for all i ̸= j. (So the events are mutually exclusive and exhaustive)

The law of total probability

Let E be an event in S and let B1, ...,Bn partition S. Then

P(E) =
n

∑
j=1

P(E|B j)P(B j)

You derived this result and looked at simple examples using this law in Probability 1

Example: A fair dice is thrown twice. Find P(E) where E is the event that the product of the
numbers on the die from the first and second throw is even. Let B1 be the event that the number
on the first throw is odd and B2 be the event that the number on the first throw is even. Then
B1,B2 form a partition of S. P(B1) = P(B2) =

1
2 . If the number on the first throw is even then

the product is certain to be even. So P(E|B1) =
1
2 . If the number on the first throw is odd, then

the product will be even if the number on the second throw is even, so P(E|B2) = 1. Hence

P(E) = P(E|B1)P(B1)+P(E|B2)P(B2) = 1× 1
2
+

1
2
× 1

2
=

3
4

Use of the law of total probability for sequences of independent trials or games

Consider an independent sequence of throws of a die. We throw the die until the number on the
die is either a 6 or is less than or equal to 2, when we stop. Let E be the event that we stop with
a throw of 6. Find P(E). A useful approach is to look back to the first throw of the die. Let B1,
B2 and B3 correspond to the event that the first throw gives respectively 6, less than or equal to
2 and neither 6 nor less than or equal to 2. Then B1,B2,B3 is a partition.

P(E) = P(E|B1)P(B1)+P(E|B2)P(B2)+P(E|B3)P(B3)

Now P(B1) =
1
6 , P(B2) =

1
3 and P(E3) =

1
2 . Also P(E|B1) = 1 and P(E|B2) = 0. If B3 occurs

then after the first throw we are essentially in the same situation statistically as we were at the
outset. We have a sequence of independent throws and will continue until the number thrown
equals 6 or is less than 2. So P(E|B3) = P(E). Hence
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P(E) =
1
6
+P(E)

1
2

Therefore solving gives P(E) = 1
3 .

An application of this method is the gambler’s ruin problem and the random walk on a line.

The Random Walk on a Line and the Gambler’s Ruin Problem.

Definition A random walk (RW) on a line is the following process. A particle moves along a
line visiting only integer points. The jumps occur at integer time moments t = 0, 1, 2, .... If at
time t it is at point n then at time t +1 it will jump either to n+1 or to n−1. The probability
of jumping from n to n+ 1 is p and the probability of jumping from n to n− 1 is q, where
p+q = 1. The random direction of the jump does not depend on previous jumps.

Remark In mathematical literature such RWs are often called simple random walks. In these
notes we shall use the abbreviated term random walk.

Denote by Xt the coordinate of the RW at time t. The above definition means that Xt changes
randomly as the time progresses according to the following rule:

P{Xt+1 = n+1|Xt = n}= p P{Xt+1 = n−1|Xt = n}= q

and these probabilities do not depend on the “history” of the walk, that is to say on the values
X0,X1, ...Xt−1.

Equivalently one can say that Xt+1 = Xt +Yt+1, where Y1,Y2, ... are independent random vari-
ables each taking values 1 with probability p and −1 with probability q. Thus if X0 is the
starting position of the walk then X1 = X0 +Y1, X2 = X0 +Y1 +Y2 and it is easy to see that

Xt = X0 +Y1 +Y2 + · · ·+Yt ,

Exercise. Prove this relation.

We shall consider the following questions concerned with the behaviour of the RW.

1. Consider M ≤ n ≤ N. What is the probability that the RW starting from n would reach N
before visiting M? Would reach M before N?

2. Consider M ≤ n. What is the probability that the RW starting from n would reach +∞ before
visiting M?

3. Suppose that X0 = 0. What is the probability that the RW would ever return to 0?

4. Let M ≤ n ≤ N. If X0 = n denote by Tn the time at which the RW reaches either N or M.
What is the expectation of Tn? (In other words what, is the mean duration of the walk?)

Before solving these problems we discuss a model which is equivalent to that of a RW.
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The Gambler’s Ruin Problem.

A gambler starts with a capital £k. He plays a sequence of games. At each game he has a
probability p of winning and probability q = 1− p of losing the game. If he wins then he
receives £1 and if he loses then he pays £1. He decides that he will stop if his capital either
grows to £N or declines to £M (in the original problem M = 0 so he goes broke, i.e. is ruined).
What is the probability that at the end of the series of games his capital would be £M? Would be
£N? If he plays against a casino, what is the probability that he wins an infinite sum of money?

To understand the relation between these two models note that if Xt is the gambler’s capital
after t games, then Xt+1 = Xt +Yt+1, where Yt is a random variable which represents the amount
he “gains” in the (t +1)st game, which is £1 with probability p and £(−1) with probability q.
Thus Xt is a random variable which behaves exactly like the coordinate of the random walk in
the model considered above. In particular the probability that at the end of the series of games
his capital would be £N is the same as the probability that a particle starting from k would reach
N before M.

Exercise. State the analogue of questions 2 and 4 in terms of the gambler’s Ruin Problem.

Solutions.

QUESTION 1. Let An be the event that the RW starting from n reaches N before visiting M.
Set rn = P(An).

Theorem The probabilities rn, M ≤ n ≤ M satisfy the following system of equations:

rn = prn+1 +qrn−1, if M < n < N (1)
rM = 0, rN = 1 (2)

Proof We condition on the outcome of the first jump, so B1 and B2 are the events ‘the first jump
is to the right’ and ‘the first jump is to the left’ respectively. Then P(B1) = p, P(B2) = q. Next,
B1, B2 form a partition and we therefore can use the Total Probability Law:

P(An) = P(B1)P(An|B1)+P(B2)P(An|B2)P(B2) (3)

If B1 occurs then the walk jumps to n+1 and the process is in the same situation as initially but
is now starting from n+1. Hence P(An|B1) = P(An+1) = rn+1. Similarly, if B2 occurs then the
walk jumps to n− 1 and therefor P(An|B2) = P(An−1) = rn−1. Therefore equation (3) can be
rewritten as

rn = prn+1 +qrn−1

which proves that the main equation (1) in the statement of the Theorem holds. To prove (2)
remember the walk stops immediately when it reaches M or N. Hence the probability to reach N
starting from N is one: rN = 1. And the probability to reach N starting from M is zero: rM = 0.
The Theorem is proved. 2

SOLVING EQUATIONS (1), (2). Equation (1) is just a simple second order difference equation.
Its partial solutions can be found in the form rn = θn, where θ satisfies the associated quadratic
equation pθ2 −θ+q = 0.

If the latter equation has two distinct roots θ1 ̸= θ2 then the general solution to (1) is given by
rn = aθn

1 +bθn
2.
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If θ1 = θ2 then the general solution to (1) is given by rn = (a+bn)θn
1.

We note that in our case the roots are θ1 = 1 and θ2 =
q
p . The roots will be equal if p = q = 1

2 .
We thus have to consider two cases.

Case when p ̸= 1
2 . The solution to the difference equation is

rn = a(1)n +b
(

q
p

)n

= a+b
(

q
p

)n

Since 0 = rM = a+b
(

q
p

)M
and 1 = rN = a+b

(
q
p

)N
, we obtain the solution

rn =

(
q
p

)n
−
(

q
p

)M

(
q
p

)N
−
(

q
p

)M (4)

Case p = 1
2 . The solution to the difference equation is rn = (a+ bn)(1)n = a+ bn. Since

0 = rM = a+bM and 1 = rN = a+bN, we obtain the solution

rn =
n−M
N −M

(5)

Similarly, let Fn be the event that the walk reaches M before N and set ln = P(Fn). Then ln
satisfies the same difference equation as rn, namely ln = pln+1+qln−1 if M < n < N. However,
the boundary conditions are different: lM = 1 and lN = 0.

Case when p ̸= 1
2 . The solution is

ln =

(
q
p

)N
−
(

q
p

)n

(
q
p

)N
−
(

q
p

)M (6)

Remark. Note that rn + ln = 1 so the series of games are certain to finish.

Case p = 1
2 . The solution is

ln =
N −n
N −M

(7)

Remark. Again rn + ln = 1.

If we indicate in the notation the boundaries M and N then we replace rn by rn(M,N) and ln by
ln(M,N) in the results above.

QUESTION 2. To answer this question we observe first that

rn(M,∞)
def
= P{reach +∞ before M}= lim

N→+∞
rn(M,N).

We write rn(M,N) to emphasize the dependence in (4) on n, M, and N. However, n, M will be
fixed while N →+∞. The answer depends on the relation between p and q.

Case when p > q. Then q
p < 1 and

lim
N→+∞

(
q
p

)N

= 0.
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Therefore

lim
N→+∞

rn(M,N) = lim
N→+∞

(
q
p

)n
−
(

q
p

)M

(
q
p

)N
−
(

q
p

)M =

(
q
p

)n
−
(

q
p

)M

0−
(

q
p

)M = 1−
(

q
p

)n−M

.

Case when p < q. Then q
p > 1 and

lim
N→+∞

(
q
p

)N

= ∞.

Therefore

lim
N→+∞

rn(M,N) = lim
N→+∞

(
q
p

)n
−
(

q
p

)M

(
q
p

)N
−
(

q
p

)M =

(
q
p

)n
−
(

q
p

)M

∞
= 0.

Case when p = q. Then one obtains from (5) that

lim
N→+∞

rn(M,N) = lim
N→+∞

n−M
N −M

= 0.

The three cases can be summarized as follows:

rn(M,∞) =

1−
(

q
p

)n−M
if q < p

0 othewise .

Exercise. Prove that

ln(−∞,N)
def
= P{reach −∞ before N}= lim

M→−∞
ln(M,N) =

1−
(

p
q

)N−n
if p < q

0 othewise

and

rn(−∞,N)
def
= P{reach N before −∞ }= lim

M→−∞
rn(M,N) =


(

p
q

)N−n
if p < q

1 othewise .

QUESTION 3. Let B1, B2 be the events that a RW starting from 0 makes its first step to the
right or left respectively. Let R denote the event that the RW returns to 0. Then by TPF

P(R) = P(B1)P(R|B1)+P(B2)P(R|B2) = pl1(0,+∞)+qr−1(−∞,0).

The above formulae allow us to solve the problem immediately. However, we need one more
ingredient, namely l1(0,+∞). One can either compute it directly (as above) or to use the relation
l1(0,+∞) = 1− r1(0,+∞). As before, the answer will depend on the relation between p and
q. E.g. suppose that p < q. Then l1(0,+∞) = 1− r1(0,+∞) = 1−0 = 1. Next, r−1(−∞,0) =(

p
q

)N−n
=

(
p
q

)0−(−1)
= p

q . Thus P(R) = p×1+q× p
q = 2p. Similarly, if p > q, then P(R) =

2q. Note that P(R) = 1 if and only if p = q = 0.5. Summarizing, we can state that

P(R) =

{
2p if p < q,
2q othewise .
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