
Probability Models - Notes 11

Poisson Process with intensity λ.

Informally, a random process can be defined as a family of random variables X(t) depending
on a real parameter t. Here we shall consider the case when t is a non-negative parameter
interpreted as time. A stream of phone calls passing through a telephone exchange at a big
hotel is a popular example of such a process. A Poisson Process with intensity λ is one of the
simplest mathematical models describing this real life situation.

Definition A random process X(t) is called a Poisson Process with intensity λ > 0 if

1. X(0) = 0.

2. For any t ≥ 0 and s ≥ 0 the random variable X(t + s)−X(t) has a Poisson distribution with
parameter λs:

P{X(t + s)−X(t) = k}= e−λs (λs)k

k!
, k = 0,1,2, . . . .

3. If 0 = t0 < t1 < ... < tn is a sequence of moments of time then X(t1)−X(t0), X(t2)−X(t1),
... , X(tn)−X(tn−1) are mutually independent random variables.

Exercise. Prove that X(t) is a monotone function of t taking integer values.

Note that it follows from the above definition that X(t) is a Poisson random variable with pa-
rameter λt. Hence E[X(t)] = λt and λ = E[X(t)]

t . We thus see that λ is the mean number of
events one expects to observe during one unit of time.

We shall now discuss several properties of the Poisson Process. These properties will be pre-
sented as answers to some natural questions which can be asked about a Poisson Process.

Question 1. What is the joint distribution of the values of the Poisson process at times t1, t2, ..., tn,
where t1 < t2 < ... < tn?

Solution. We need to find P{X(t1) = k1, X(t2) = k2, ...,X(tn) = kn}. Note that this probability
is not equal to 0 only if k1 ≤ k2 ≤ ...≤ kn (explain this).

If n = 1 then P{X(t1) = k1}= P{X(t1)−X(0) = k1}
by 2.
= e−λt1 (λt1)k1

k1! .

If n = 2 then

P{X(t1) = k1,X(t2) = k2}= P{X(t1) = k1, X(t2)−X(t1) = k2 − k1}
by 3.
= P{X(t1) = k1}×P{X(t2)−X(t1) = k2 − k1}

= e−λt1 (λt1)k1

k1!
× e−λ(t2−t1) (λ(t2 − t1))k2−k1

(k2 − k1)!
= e−λt2λk2

tk1
1 (t2 − t1)k2−k1

k1!(k2 − k1)!
.

Similarly, it is easy to show that

P{X(t1) = k1, X(t2) = k2, ...,X(tn) = kn}= e−λtnλkn
tk1
1 (t2 − t1)k2−k1 . . .(tn − tn−1)

kn−kn−1

k1!(k2 − k1)!...(kn − kn−1)!
.
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X(t) can be interpreted as the number of events which took place by time t (e.g. the number of
calls received by a telephone exchange). It is natural to consider the random times at which these
events occur: T1, T2, ..., Tn, .... These times are called the waiting times or the the arrival times,
sometimes the occurrence times. Naturally, the inter-arrival times are the random intervals of
time which separate consecutive events: W1

def
= T1, W2

def
= T2 −T1, ..., Wn

def
= Tn −Tn−1, ...

Question 2. What is the distribution of Tn?

Solution. We need to find the p.d.f. fTn(x) of the r.v. Tn. To this end we shall first find the
cumulative distribution function FTn(x) = P{Tn ≤ x}= 1−P{Tn > x} and then use the formula
fTn(x) = F ′

Tn
(x). Note that Tn ≥ 0 and therefore FTn(x) = 0 if x < 0. Thus we only need to

consider x ≥ 0.

We start with n = 1 (and x ≥ 0). Then we have the following equality of events: {T1 > x} =
{X(x) = 0}. Hence P{T1 > x} = P{X(x) = 0} = e−λx (by property 2. of a Poisson Process).
Hence the distribution function of T1 is FT1(x) = 1− e−λx and therefore fT1(x) = (1− e−λx)′ =
λe−λx. The answer thus is that T1 is an exponential r. v. with parameter λ:

fT1(x) =

{
λe−λx if x > 0
0 if x ≤ 0.

Next, let n = 2. Then {T2 > x} = {X(x) = 0}∪{X(x) = 1} and P{T2 > x} = P{X(x) = 0}+
P{X(x) = 1} = e−λx + e−λxλx. Hence fT2(x) = (1− e−λx − e−λxλx)′ = λ2xe−λx. The answer
thus is

fT2(x) =

{
λ2xe−λx if x > 0,
0 if x ≤ 0.

Similarly, for any n ≥ 1 we have P{Tn > x}= P{X(x)≤ n−1} and hence

P{Tn > x}= P{X(x) = 0}+P{X(x) = 1}+ ...+P{X(x) = n−1}=
n−1

∑
k=0

e−λx (λx)k

k!
.

Hence fTn(x) = (1−∑n−1
k=0 e−λx (λx)k

k! )′ = λn xn−1

(n−1)!e
−λx. This means that Tn ∼ Gamma(λ,n) with

fTn(x) =

{
λn xn−1

(n−1)!e
−λx if x > 0,

0 if x ≤ 0.

We now turn to the distribution of Wn. Since W1 = T1 we have that

fW1(x) =

{
λe−λx if x > 0
0 if x ≤ 0

which means that W1 ∼ Exponential(λ). It turns out that the following theorem holds:

Theorem. The inter-arrival times are mutually independent random variables each having
exponential distribution with parameter λ, that is

fW1,W2,...,Wn(x1,x2, ...,xn) =

{
λne−λ(x1+x2+...+xn) if x1 > 0, x2 > 0, ..., xn > 0
0 otherwise .

The proof of this theorem has not been explained in lectures and you are not supposed to know
it. However, it is a very good exercise to prove this statement for n = 2.
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