
Probability Models - Notes1

Review of common probability distributions

1. Single trial with probability p of success. X counts the number success (so X = 1 if the out-
come is a success and X = 0 if the outcome is a failure). Then one says that X ∼ Bernoulli(p).
P(X = 1) = p and P(X = 0) = q where q = 1− p. E[X ] = p, Var(X) = pq.

2. Sequence of n independent trials, each with probability p of success. X counts the number
of successes. Then X ∼ Binomial(n, p). P(X = k) =

(n
k

)
pkqn−k for k = 0,1, ...,n. E[X ] = np,

Var(X) = npq.

Binomial expansion is (a+ b)n = ∑n
k=0

(n
k

)
akbn−k. If we let a = p and b = q this shows that

∑n
k=0 P(X = k) = (p+q)n = 1n = 1.

3. Sequence of independent trials, each with probability p of success. X counts the number
of trials required to obtain the first success. Then X ∼Geometric(p). P(X = k) = qk−1 p for
k = 1,2, ... E[X ] = 1

p , Var(X) = q
p2 .

Sum of geometric series is ∑∞
k=1 azk−1 = a

(1−z) if |z|< 1. If we let a = p and z = q, this shows
that ∑∞

k=1 P(X = k) = p
1−q = 1.

4. Sequence of independent trials, each with probability p of success. X counts the number
of trials required to obtain the kth success. Then X ∼Negative Binomial (k, p). P(X = n) =(n−1

k−1

)
pkqn−k for x = k,k+1, ... E[X ] = k

p , Var(X) = kq
p2 .

For |z|< 1 the negative binomial expansion is just

(1− z)−k = 1+ kz+
k(k+1)

2!
z2 +

k(k+1)(k+2)
3!

z3 + ...=
∞

∑
n=k

(
n−1
k−1

)
zn−k.

Hence if we let z = q then ∑∞
n=k P(X = n) = pk(1−q)−k = 1.

Exercise. Prove that X =X1+X2+...+Xk, where X j, 1≤ j ≤ k are independent X ∼Geometric(p)
random variables. Using this fact derive the formulae E[X ] = k

p , Var(X) = kq
p2 .

5. If events occur randomly and independently in time, at rate λ per unit time, and X counts the
number of events in a unit time interval then X ∼Poisson(λ). P(X = k) = λke−λ

k! for k = 0,1, ....
E[X ] = λ, Var(X) = λ.

Taylor expansion of exponential is ez = ∑∞
x=0

zk

k! . Hence if we let z = λ then∑∞
k=0 P(X = k) =

e−λeλ = 1.



Probability Generating Function (p.g.f)

Definition For a discrete random variable X which can only take non-negative integer values
we define the probability generating function associated with X to be:

GX(t) = E[tX ]

or, equivalently,

GX(t) =
∞

∑
k=0

P(X = k)tk, where |t| ≤ 1.

Note that this is a power series in t.

We can easily find the p.g.f. for all the common probability distributions 1-5 using the expan-
sions given earlier. Note that the hypergeometric (covered in Probability 1) has no simple form
for the p.g.f.

(1) GX(t) = q+ pt.

(2) GX(t) = ∑n
k=0

(n
k

)
(pt)kqn−k = (pt +q)n.

(3) GX(t) = ∑∞
k=1(pt)(qt)k−1 = pt

1−qt .

(4) GX(t) = (pt)k ∑∞
n=k

(n−1
k−1

)
(qt)n−k = (pt)k

(1−qt)k .

(5) GX(t) = e−λ ∑∞
k=0

(λt)k

k! = eλ(t−1).

It is easily seen that GX(0) = P(X = 0), GX(1) = 1 and GX(t) is monotone increasing function
of t for t ≥ 0.

Uses of the p.g.f.

1. Knowing the p.g.f. determines the probability mass function.

The p.g.f., GX(t), is a power series with the coefficient of tk just the probability P(X = k).
There is a unique power series expansion. Hence if X and Y are two random variables with
GX(t) = GY (t), then P(X = k) = P(Y = k) for all k = 0,1, ....

If we know the p.g.f. then we can expand it in a power series and find the individual terms of
the probability mass function.

e.g. GX(t) = 1
2(1+ t2) = 1

2 +0× t + 1
2t2 +0× t3 + .... Hence P(X = 0) = 1

2 , P(X = 2) = 1
2 and

P(X = x) = 0 for all other non-negative integers x.

If we recognise the p.g.f. GX(t) as a p.g.f. corresponding to a specific distribution, then X has
that distribution. We do not need to bother doing the power series expansion!

e.g. if GX(t) = e2t−2 = e2(t−1), this is the p.g.f. for a Poisson distribution with parameter 2.
Hence X ∼Poisson (2).



2. We can differentiate the p.g.f. to obtain P(X = r) and the factorial moments (and hence
the mean and variance of X).

P(X = 0) = GX(0); P(X = 1) = G
′
X(0); P(X = 2) =

1
2

G
′′
X(0)

In general P(X = r) = 1
r!G

(r)
X (0) where G(r)

X (t) = drGX (t)
dtr .

Theorem

E[X ] = G
′
X(1); E[X(X −1)] = G′′

X(1); Var(X) = G′′
X(1)+G

′
X(1)− [G

′
X(1)]

2

Proof By definition, GX(t) = E[tX ]. Hence

G′
X(t) =

d
dt

E[tX ] = E[(tX)′] = E[XtX−1]

and therefore G′
X(1) = E[X ] which proves the first relation. Similarly,

G′′
X(t) =

d
dt

E[XtX−1] = E[(XtX−1)′] = E[X(X −1)tX−1]

and therefore G′′
X(1) = E[X(X −1)] which proves the second relation. Note that E[X(X −1)] =

E[X2]−E[X ] and hence E[X2] = E[X(X − 1)]+E[X ] = G
′′
X(1)+G

′
X(1). By the definition of

the variance and due to these relations we obtain

Var(X) = E[X2]− (E[X ])2 = G
′′
X(1)+G

′
X(1)− [G

′
X(1)]

2. 2

Remarks. 1. Strictly speaking, the above proof is incomplete. The reason for that is that we
interchanged the operation of computing the expectation with that of computing a derivative.
The technique which would allow us to justify the above lies beyond the scope of this course.

2. More generally, the rth factorial moment can be computed as follows:

E[X(X −1)...(X − r+1)] = G(r)
X (1)

3. The other way is to obtain the above relations by differentiating GX(t) = P(X = 0)+ tP(X =
1)+ t2P(X = 2)+ ... termwise:

G
′
X(t) = P(X = 1)+2tP(X = 2)+3t2P(X = 3)+ ....

from which we have E[X ] = G
′
X(1) and P(X = 1) = G

′
X(0) and for any positive integer r

drGX(t)
dtr = r!P(X = r)+

(r+1)!
1!

tP(X = r+1)+
(r+2)!

2!
t2P(X = r+2)+ ...



from which we have E[X(X −1)...(X −r+1)] = G(r)
X (1) and P(X = r) = G(r)

X (0)
r! e.g. If GX(t) =

1+t
2 e(t−1) find E[X ], Var(X), P(X = 0) and P(X = 1).

G
′
X(t) =

1
2

e(t−1)+
1+ t

2
e(t−1)

G(2)
X (t) =

1
2

e(t−1)+
1
2

e(t−1)+
1+ t

2
e(t−1)

Hence E[X ] = G
′
X(1) =

3
2 , var(X) = G(2)

X (1)+ 3
2 −

9
4 = 5

4 , P(X = 0) = GX(0) = e−1

2 and P(X =

1) = G
′
X(0) = e−1.

3. Using the p.g.f. to find the distribution of the sum of two or more independent random
variables.

Recall that if X and Y are independent random variables then E[g(X)h(Y )] = E[g(X)]E[h(Y )].

Theorem. Let X and Y be independent random variables with p.g.f.’s GX(t) and GY (t). Then
Z = X +Y has p.g.f. GZ(t) = GX(t)GY (t).

Proof. Using the independence we can write

GZ(t) = E[tZ] = E[tX+Y ] = E[tX tY ] = E[tX ]E[tY ] = GX(t)GY (t).

2

This extends to the sum of a fixed number n of independent random variables.

If X1, ...,Xn are independent and Z = ∑n
j=1 X j then

GZ(t) =
n

∏
j=1

GX j(t).

Example 1. Let X and Y be independent random variables with X ∼ Binomial(n, p) and Y ∼
Binomial(m, p) and let Z = X +Y . Then

GZ(t) = GX(t)GY (t) = (pt +q)n(pt +q)m = (pt +q)m+n

This is the p.g.f. of a binomial random variable. Hence Z ∼ Binomial(n+m, p).

Example 2. Let X1, ...,Xm be m independent random variables with X j ∼ Binomial(n j, p) and
let Z = ∑m

j=1 X j and N = ∑m
j=1 n j. Then

GZ(t) =
m

∏
j=1

GX j(t) =
m

∏
j=1

(pt +q)n j = (pt +q)N

This is the p.g.f. of a binomial random variable. Hence Z ∼ Binomial(N, p).


