Probability Models - Notes1

Review of common probability distributions

1. Single trial with probability p of success. X counts the number success (so X = 1 if the out-
come is a success and X = 0 if the outcome is a failure). Then one says that X ~ Bernoulli(p).
PX=1)=pand P(X =0) =g where ¢ =1 — p. E[X]| = p, Var(X) = pq.

2. Sequence of n independent trials, each with probability p of success. X counts the number
of successes. Then X ~ Binomial(n, p). P(X = k) = (}) p*¢" ¥ for k =0,1,...,n. E[X] = np,
Var(X) = npq.

Binomial expansion is (a+b)" = Y}, () a*b" . If we let a = p and b = ¢ this shows that
YieoPX =k)=(p+q)"=1"=1.

3. Sequence of independent trials, each with probability p of success. X counts the number
of trials required to obtain the first success. Then X ~Geometric(p). P(X = k) = ¢~ !p for

k=1,2,.. EX] = J, Var(X) = 5.

Sum of geometric series is Y5 az" "1 = ﬁ if |z| < 1. If we let a = p and z = g, this shows

that Y2 P(X = k) = £, = L.
4. Sequence of independent trials, each with probability p of success. X counts the number

of trials required to obtain the k* success. Then X ~Negative Binomial (k,p). P(X =n) =
(Z:Dpkqnfk forx=kk+1,... E[X] = %’ Var(X> — %

For |z| < 1 the negative binomial expansion is just

k(k-+ 1)Z2+ k(k+ 1)(k+2)z3 o i (n— 1)Z"_k.

_k_
(1—2) " =1+kz+ X 3l

Hence if we letz =g then Y, P(X =n) = p*(1—q)* = 1.

Exercise. Prove that X = X; +Xo+... + X, where X, 1 < j <k are independent X ~Geometric(p)
random variables. Using this fact derive the formulae E[X] = 1%, Var(X) = f}—%

5. If events occur randomly and independently in time, at rate A per unit time, and X counts the

number of events in a unit time interval then X ~Poisson(L). P(X =k) = kk,f; " for k = 0,1,....
E[X]=A,Var(X) =\

Taylor expansion of exponential is e =Y i—k, Hence if we let z = A then) ;. (P(X =k) =
—A A
e et =1.



Probability Generating Function (p.g.f)

Definition For a discrete random variable X which can only take non-negative integer values
we define the probability generating function associated with X to be:

or, equivalently,
Gx(t)= Y P(X = k)t*,  where |t| < 1.
k=0
Note that this is a power series in .
We can easily find the p.g.f. for all the common probability distributions 1-5 using the expan-

sions given earlier. Note that the hypergeometric (covered in Probability 1) has no simple form
for the p.g.f.

(1) Gx(t) = g+ pt.
(2) Gx(t) = Xi_o (3) (p1)*q"* = (pt +q)".

(3) Gx (t) = X (pt) (g ' = 125

() Gx(0) = (P Ty (1) (a0 = 205

k
(5) GX(t) = e_xzzozo% — e?\,(l—l).

It is easily seen that Gx(0) = P(X =0), Gx(1) = 1 and Gx () is monotone increasing function
of t fort > 0.
Uses of the p.g.f.

1. Knowing the p.g.f. determines the probability mass function.

The p.g.f., Gx(t), is a power series with the coefficient of ¢* just the probability P(X = k).
There is a unique power series expansion. Hence if X and Y are two random variables with
Gx(t) =Gy(t),then P(X =k) =P(Y =k) forallk=0,1,....

If we know the p.g.f. then we can expand it in a power series and find the individual terms of
the probability mass function.

e.g. Gx(t)=3(1+12) =1 +0xt+ 32 +0x 3 +.... Hence P(X = 0) =
PX=x)=0 for all other non-negative integers x.

PX=2)= 2and

l\)l—‘

If we recognise the p.g.f. Gx(r) as a p.g.f. corresponding to a specific distribution, then X has
that distribution. We do not need to bother doing the power series expansion!

e.g. if Gx(t) =¥ 2 = ¢*=1)  this is the p.g.f. for a Poisson distribution with parameter 2.
Hence X ~Poisson (2).



2. We can differentiate the p.g.f. to obtain P(X = r) and the factorial moments (and hence
the mean and variance of X).

P(X =0) = Gx(0); P(X = 1) = Gx(0); P(X =2) = >G(0)

In general P(X =r) = %Gg) (0) where Gg{) (1) = drgf,(l).
Theorem

E[X] = Gx(1); EX(X—1)] = Gx(1); Var(X) = Gx(1)+Gy(1) - [Gy (1)
Proof By definition, Gy (¢) = E[tX]. Hence

Gy(1) = L EI¥) = (")) = Ex/*]

and therefore G (1) = E[X] which proves the first relation. Similarly,

d

G%(f):d—

tmm*ﬂzm@ﬁ”ﬂ:Em@—nﬂﬁ

and therefore G% (1) = E[X (X — 1)] which proves the second relation. Note that E[X (X — 1)] =

E[X?] — E[X] and hence E[X%] = E[X(X —1)] + E[X] = Gy (1) + Gy (1). By the definition of
the variance and due to these relations we obtain

Var(X) = E[X?] - (E[X])* = Gx (1) + Gx (1) = [Gx(1)*. O

Remarks. 1. Strictly speaking, the above proof is incomplete. The reason for that is that we
interchanged the operation of computing the expectation with that of computing a derivative.
The technique which would allow us to justify the above lies beyond the scope of this course.

2. More generally, the 7" factorial moment can be computed as follows:

EX(X-1)..X—r+1)]=6Y(1)

3. The other way is to obtain the above relations by differentiating Gx (t) = P(X =0) +tP(X =
1)+12P(X = 2) + ... termwise:

Gy(t) =P(X =1)+2tP(X =2)+3°P(X =3) +....
from which we have E[X] = Gy (1) and P(X = 1) = Gy (0) and for any positive integer r

d"Gx (1) (r+1)!

I!

2)!
O;‘)ﬂﬂX:r+2}h“

=rlP(X =r)+ tPX=r+1)+



from which we have E[X(X —1)...(X —r+1)] = gf)( l)and P(X =r) = @ e.g. IfGx(t) =
Ltet=Y find E[X], Var(X), P(X =0) and P(X = 1).
Gl(t) = %60—1) —f—%e(t_l)
62 () = %ea—l) N %ea—l) N %ea—l)
Hence £[X] = Gy(1) =3, var(X) =GP (1) +3 -9 =3, P(X =0) = Gx(0) = &~ and P(X =

1) =Gy (0)=e".

3. Using the p.g.f. to find the distribution of the sum of two or more independent random
variables.

Recall that if X and Y are independent random variables then E[g(X)h(Y)] = E[g(X)]E[h(Y)].

Theorem. Let X and Y be independent random variables with p.g.f’s Gx(t) and Gy(t). Then
Z=X+Y hasp.gf Gz(t) = Gx(t)Gy ().

Proof. Using the independence we can write
Gz(t) = E[t*] = E[*™] = E[t*¢"] = E[*"]E[t"] = Gx (t)Gy (¢).
O

This extends to the sum of a fixed number n of independent random variables.

If Xi, ..., X, are independent and Z = 2’}21 X then

n
Gz(l) = HGXj(t).
j=1
Example 1. Let X and Y be independent random variables with X ~ Binomial(n,p) and Y ~
Binomial(m,p) and let Z= X +Y. Then

Gz(t) = Gx(t)Gy (1) = (pt +q)" (pt +q)" = (pt +q)"™"

This is the p.g.f. of a binomial random variable. Hence Z ~ Binomial(n+ m, p).

Example 2. Let X1, ...,X,, be m independent random variables with X; ~ Binomial(n;, p) and
letZ = Z’;l:lXj and N = Z?’:l n;. Then

m

m
Gz(t) =[] Gx,(t) =[] (pt+a)" = (pt +q)"
=1 =1

This is the p.g.f. of a binomial random variable. Hence Z ~ Binomial (N, p).



