
Probability 2 - Notes 6

The Trinomial Distribution

Consider a sequence of n independent trials of an experiment. The binomial distribution arises
if each trial can result in 2 outcomes, success or failure, with fixed probability of success p at
each trial. If X counts the number of successes, then X ∼ Binomial(n, p).

Now suppose that at each trial there are 3 possibilities, say “success”, “failure”, or “neither” of
the two, with corresponding probabilities p, θ, 1− p−θ, which are the same for all trials. If
we write 1 for “success”, 0 for “failure”, and −1 for “neither”, then the outcome of n trials can
be described as a sequence of n numbers

ω = (i1, i2, ..., in), where each i j takes vales 1, 0, or -1

Obviously, P(i j = 1) = p, P(i j = 0) = θ P(i j =−1) = 1− p−θ.

Definition. Let X be the number of trials where 1 occurs, and Y be the number of trials where
and 0 occurs. The joint distribution of the pare (X ,Y ) is called the trinomial distribution.

The following statement provides us with .

Theorem. The joint p.m.f. for (X ,Y ) is given by

fX ,Y (k, l) = P(X = k,Y = l) =
n!

k!l!(n− k− l)!
pkθl(1− p−θ)n−k−l,

where k, l ≥ 0 and k + l ≤ n.
Proof. The sample space consists of all sequences of length n described above. If a specific
sequence ω has k “successes” (1’s) and l “failures” (0’s)then P(ω) = pkθl(1− p− θ)n−k−l .
There are

(n
k

)(n−k
l

)
= n!

k!l!(n−k−l)! different sequences with k “successes” (1’s) and l “failures”

(0’s). Hence P(X = k,Y = l) = n!
k!l!(n−k−l)! pkθl(1− p−θ)n−k−l . 2

The name of the distribution comes from the trinomial expansion

(a+b+ c)n = (a+(b+ c))n =
n

∑
k=0

(
n
k

)
ak(b+ c)n−k

=
n

∑
k=0

n−k

∑
l=0

(
n
k

)(
n− k

l

)
akblcn−k−l =

n

∑
k=0

n−k

∑
l=0

n!
k!l!(n− k− l)!

akblcn−k−l

Properties of the trinomial distribution

1) The marginal distributions of X and Y are just X ∼ Binomial(n, p) and Y ∼ Binomial(n,θ).
This follows the fact that X is the number of “successes” in n independent trials with p being
the probability of ‘successes” in each trial. Similar argument works for Y .

Note that therefore E[X ] = np, E[Y ] = nθ and E[Y 2] = Var(Y )+(E[Y ])2 = nθ(1−θ)+n2θ2
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2) If Y = l, then the conditional distribution of X |(Y = l) is Binomal(n− l, p
1−θ).

Proof.

P(X = k|Y = l) =
P(X = k,Y = l)

P(Y = l)
=

n!
k!l!(n−k−l)! pkθl(1− p−θ)n−k−l

n!
l!(n−l)!θ

l(1−θ)n−l

=
(

n− l
k

)(
p

1−θ

)k (
1− p

1−θ

)n−l−k

for x = 0,1, ...,(n− y). Hence (X |Y = y)∼ Binomial
(
n− y, p

1−θ
)
. 2

This is intuitively obvious. Consider those trials for which “failure” (or 0) did not occur. There
are (n− l) such trials, for each of which the probability that 1 occurs is actually the conditional
probability of 1 given that 0 has not occurred, i.e. p

1−θ . So you have the standard binomial
set-up.

3) We shall now use the results on conditional distributions (Notes 5) and the above properties
to find Cov(X ,Y ) and the coefficient of correlation ρ(X ,Y ).

We proved that E[XY ] = E[Y E[X |Y ]] (see the last page of Notes 5). According to property 2),
E[X |Y = l] = (n− l) p

1−θ and thus E[X |Y ] = (n−Y ) p
1−θ . Hence

E[XY ] = E
[
Y × (n−Y )

p
(1−θ)

]
=

p
1−θ

E(nY −Y 2) =
p

1−θ
(
n2θ−nθ(1−θ)−n2θ2)

=
p

(1−θ)
[n(n−1)θ(1−θ)] = n(n−1)pθ

Therefore Cov(X ,Y ) = E[XY ]−E[X ]E[Y ] = n(n−1)pθ−n2 pθ =−npθ and hence

ρ(X ,Y ) =
Cov(X ,Y )√

Var(X)Var(Y )
=

−npθ√
n2 p(1− p)θ(1−θ)

=−
(

pθ
(1− p)(1−θ)

) 1
2

Note that if p+θ = 1 then Y = n−X and there is an exact linear relation between Y and X . In
this case it is easily seen that ρ(X ,Y ) =−1.

Definition of the multinomial distribution

Now suppose that there are k outcomes possible at each of the n independent trials. Denote the
outcomes A1,A2, ...,Ak and the corresponding probabilities p1, ..., pk where ∑k

j=1 p j = 1. Let X j
count the number of times A j occurs. Then

P(X1 = x1, ...,Xk−1 = xk−1) =
n!

x1!x2!...xk−1!(n−∑k−1
j=1 x j)!

px1
1 px2

2 ...pxk−1
k−1 p

n−∑k−1
j=1 x j

k

where x1,x2, ...,xk−1 are non-negative integers with ∑k−1
j=1 x j ≤ n.
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