
Probability III – 2008/09

Solutions to Exercise Sheet 7

In lectures, we proved several statements about the Birth Process (BP). They can be
briefly summarized as follows.

Theorem 1. Suppose that X(t) is a birth process with X(0) = 0. Set pn(t)
def
= P{X(t) =

n|X(0) = 0} Then the functions pn(t) satisfy the following equations:





p′n(t) = −λnpn(t) + λn−1pn−1(t) n ≥ 0

p0(0) = 1

pn(0) = 0 if n > 0.

(1)

Theorem 2. Equations (1) have a unique solution which can be found recursively using
the following formulae:

{
p0(t) = e−λ0t

pn(t) = λn−1e
−λnt

∫ t

0
eλnspn−1(s)ds n > 0

(2)

Marks
[60] 1. Let X(t) be a Birth Process with parameters λ0, λ1, ..., λn, ... and suppose that

X(0) = 3. Set pn(t)
def
= P{X(t) = n|X(0) = 3}

(a) Using the method explained in lectures derive equations for p3(t) and for p4(t).
Solution

Since X(0) = 3, state 3 plays in our case the same role as 0 in the case when
X(0) = 0. The only difference is that now the parameters of the Birth Process
are λ3, λ4, ... (remark that λ0, λ1, λ2 are unimportant because X(t) ≥ 3). We
can thus claim by analogy that





p′n(t) = −λnpn(t) + λn−1pn−1(t) n ≥ 3

p3(0) = 1

pn(0) = 0 if n > 3.

(3)

In particular, for n = 3 and taking into account that p2(t) ≡ 0 we claim that

p′3(t) = −λ3p3(t), with p3(0) = 1. (4)

If n = 4 then the claim is that

p′4(t) = −λ4p4(t) + λ3p3(t) with p4(0) = 0 (5)
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The proof is exactly the same as the one explained in lectures (with natural
replacements of λ0 by λ3 etc. Nevertheless you are required to write it down.
So here it is.

Proof of (4). For h > 0, the following equality follows from the monotonicity
of the Birth Process (if X(0) = 3 and X(t + h) = 3, then also X(t) = 3)

P{X(t + h) = 3|X(0) = 3} = P{X(t) = 3, X(t + h) = 3|X(0) = 3}
= P{X(t) = 3|X(0) = 3}P{X(t + h) = 3|X(t) = 3, X(0) = 3}. (6)

By the Markov property

P{X(t + h) = 3|X(t) = 3, X(0) = 3} = P{X(t + h) = 3|X(t) = 3}.

Equation (6) can now be written as

p3(t + h) = p3(t)P{X(t + h) = 3|X(t) = 3} = p3(t)(1− λ3h + o(h)), (7)

where the quality P{X(t + h) = 3|X(t) = 3} = 1 − λ3h + o(h) is due to the
definition of the Birth process. Equation (7) can be written as

p3(t + h) = p3(t)− λ3hp3(t) + o(h) remember that p3(t)o(h) = o(h).

Hence
p3(t + h)− p3(t)

h
= −λ3p3(t) +

o(h)

h
.

Letting h → 0 implies
p′3(t) = −λ3p3(t),

and this finishes the proof of (4). Finally, the initial condition p3(0) = 1 follows
from p3(0) = P{X(0) = 3|X(0) = 3} = 1 which is clearly true.

Proof of (5). For h > 0, the following equality follows from the monotonicity
property of the BP and the total probability formula:

P{X(t + h) = 4|X(0) = 3} =

P{X(t) = 3|X(0) = 3}P{X(t + h) = 4|X(t) = 3, X(0) = 3}+
P{X(t) = 4|X(0) = 3}P{X(t + h) = 4|X(t) = 4, X(0) = 3}.

(8)

By the Markov property

P{X(t + h) = 4|X(t) = 3, X(0) = 3} = P{X(t + h) = 4|X(t) = 3},
P{X(t + h) = 4|X(t) = 4, X(0) = 3} = P{X(t + h) = 4|X(t) = 4}

Equation (8) can now be written as

p4(t + h) = p3(t)P{X(t + h) = 4|X(t) = 3}+ p4(t)P{X(t + h) = 4|X(t) = 4}.
(9)
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Since by the definition of the Birth Process P{X(t + h) = 4|X(t) = 3} =
λ3h + o(h) and P{X(t + h) = 4|X(t) = 4} = 1− λ4h + o(h) we obtain

p4(t + h) = p4(t)(1− λ4h + o(h)) + p3(t)(λ3h + o(h)).

Hence
p4(t + h)− p4(t)

h
= −λ4p4(t) + λ3p3(t) +

o(h)

h
.

Letting h → 0 implies that

p′4(t) = −λ4p4(t) + λ3p3(t),

and this finishes the proof of (5). The initial condition p4(0) = 0 follows from
p4(0) = P{X(0) = 4|X(0) = 3} = 0.

(b) State the equation for pn(t).

Solution It is the same equation as before, namely

p′n(t) = −λnpn(t) + λn−1pn−1(t). (10)

The difference is that now n ≥ 4 and that p3(t) = e−λ3t (obviously, pi(t) ≡
0, 0 ≤ i ≤ 2).

(c) Derive formulae similar to (2) for p3(t) and for pn(t), n ≥ 4.

Solution For n = 3, it follows from (4) that p3(t) = ce−λ3t. Since p3(0) = 1,
we have ce−λ3×0 = 1. Hence c = 1 and p3(t) = e−λ3t.

If n ≥ 4 then multiplying equation (10) by eλnt and writing it as

eλntp′n(t) + eλntλnpn(t) = λn−1e
λntpn−1(t), n ≥ 0

we obtain (
eλntpn(t)

)′
= λn−1e

λntpn−1(t), n ≥ 3.

(make sure that you understand this calculation!). Hence
∫ t

0

(
eλnspn(s)

)′
ds = λn−1

∫ t

0

eλnspn−1(s)ds, n ≥ 3

and we obtain that

eλntpn(t)− pn(0) = λn−1

∫ t

0

eλnspn−1(s)ds, n ≥ 3.

Thus

pn(t) = e−λntpn(0) + e−λntλn−1

∫ t

0

eλnspn−1(s)ds, n ≥ 3.

If n = 3 then p3(0) = P{X(0) = 3|X(0) = 3} = 1, p2(s) ≡ 0 and the
last formula implies that p3(t) = e−λ3t (which means that we got one more
derivation of the expression for p3(t)). For n > 3, we have pn(0) = P{X(0) =
n|X(0) = 3} = 0 and

pn(t) = e−λntλn−1

∫ t

0

eλnspn−1(s)ds.
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(d) Suppose that λ3 = 1, λ4 = 1.5. Find the expressions for p3(t) and for p4(t).

Solution We have just shown (this can also be inferred from (4)) that p3(t) =
e−λ3t. Next, for n = 4 we have

p4(t) = λ3e
−λ4t

∫ t

0

eλ4sp3(s)ds = λ3e
−λ4t

∫ t

0

e(λ4−λ3)sds =
λ3

λ4 − λ3

(e−λ3t−e−λ4t).

Hence the answer:

p3(t) = e−t, p4(t) = 2(e−t − e−1.5t).

(e) Find the probability density function of the time W4 the process X(t) remains
in the state 3.

Solution The distribution function of W4 is given by

FW4(y) = P{W4 ≤ y|X(0) = 3} = 1− P{W4 > y|X(0) = 3}.
But P{W4 > y|X(0) = 3} = P{X(y) = 3|X(0) = 3} = e−y and hence
FW4(y) = 1− e−y and the p. d. f. is given by fW4(y) = (1− e−y)′ = e−y (note
that y ≥ 0 since W4 ≥ 0).

(f) Hence find the mean time E(W4|X(0) = 3) the process X(t) spends in the
state 3.

Solution E(W4|X(0) = 3) =
∫∞

0
ye−ydy = 1.

2. Consider the birth process (which we briefly discussed in lectures) with λn = nλ[40]
(λ > 0).

(a) Prove that equations (1) imply that P{X(t) = 0|X(0) = 0} = 1.

Proof. Note that λ0 = 0. By the definition of pn(t) we have that p0(t) =
P{X(t) = 0|X(0) = 0} = eλ0t = e0×t = 1.

(b) If, however, X(0) = 1 then

pn(t)
def
= P{X(t) = n|X(0) = 1} = e−λt(1− e−λt)n−1. (11)

Check that this is true.

Hint: since you are given the explicit expressions for pn(t), it suffices to show
that these functions satisfy equations (1) (and relevant initial conditions).

Solution Let us find the derivative of pn(t):

p′n(t) = −λe−λt(1− e−λt)n−1 + λ(n− 1)e−2λt(1− e−λt)n−2.

Hence

p′n(t) = −nλe−λt(1−e−λt)n−1+(n−1)λe−λt(1−e−λt)n−1+λ(n−1)e−2λt(1−e−λt)n−2.

In other words,

p′n(t) = −λnpn(t) + (n− 1)λe−λt(1− e−λt)n−2(1− e−λt + e−λt)
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and thus
p′n(t) = −λnpn(t) + λn−1pn−1(t).

Since pn(t) defined by (11) also satisfies p1(0) = 1 and pn(0) = 0 for n > 1
we conclude that pn(t) = P{X(t) = n|X(0) = 1}. (We use here the fact that
these probabilities satisfy equations (1) with appropriate initial conditions and
that there is only one sequence of of functions satisfying these equations.)

(c) The statement made in (b) means that the random variable X(t) conditioned
on X(0) = 1 has a geometric distribution. Hence, find E(X(t)|X(0) = 1).
Does E(X(t)|X(0) = 1) grow exponentially fast as a function of t?

Solution

E(X(t)|X(0) = 1) =
∞∑

n=1

npn(t) =
∞∑

n=1

e−λt(1− e−λt)n−1 =
1

e−λt
= eλt.

The answer is YES, this expectation grows exponentially fast.
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