Probability III - 2008/09

Solutions to Exercise Sheet 6

1. (a)

$$
P(X(1)=2)=P(X(1)-X(0)=2)=\left.e^{-\lambda t} \frac{(\lambda t)^{2}}{2!}\right|_{\lambda=2, t=1}=2 e^{-2}=0.2707
$$

by (iii) and (ii) in the definition of the Poisson process.
(b) By the definition of the Poisson process, its increments are independent random variables. Hence
$P(X(1)=2, X(3)=6)=P(X(1)=2, X(3)-X(1)=4)=P(X(1)=2) P(X(3)-X(1)=4)$
and therefore

$$
P(X(1)=2, X(3)=6)=e^{-\lambda} \frac{\lambda^{2}}{2!} e^{-\lambda(3-1)} \frac{(\lambda(3-1))^{4}}{4!}=\frac{64}{3} e^{-6}=0.05288
$$

(c) By the theorem proved in lectures, $X(1)$ conditioned on $X(3)=6$ is a Binomial random variable with parameters $\left(6, \frac{1}{3}\right)$. Hence

$$
P(X(1)=2 \mid X(3)=6)=\binom{6}{2}\left(\frac{1}{3}\right)^{2}\left(\frac{2}{3}\right)^{4}=\frac{80}{243}=0.3292
$$

(d) Since $P(X(1)=2, X(3)=6)=P(X(1)=2) \times P(X(3)-X(1)=4)$, we have $P(X(3)=6 \mid X(1)=2)=\frac{P(X(1)=2, X(3)=6)}{P(X(1)=2)}=P(X(3)-X(1)=4)=\frac{32 e^{-4}}{3}=0.1953$
2. We must find $P\left(X\left(t_{1}\right)=k, X\left(t_{2}\right)=n\right)$ for all values $k, n=0,1,2 \ldots$.

$$
P\left(X\left(t_{1}\right)=k, X\left(t_{2}\right)=n\right)=0 \quad \text { for all } k>n .
$$

This is because $t_{1}<t_{2}(X(t)$ counts events that happened in the interval $(0, t]$, hence $X(t)$ cannot decrease with t).
When $n \geq k$
$P\left\{X\left(t_{1}\right)=k, X\left(t_{2}\right)=n\right\}=P\left\{X\left(t_{1}\right)=k\right\} \times P\left\{X\left(t_{2}\right)-X\left(t_{1}\right)=n-k\right\}=\frac{t_{1}^{k}\left(t_{2}-t_{1}\right)^{n-k} \lambda^{n} e^{-\lambda t_{2}}}{k!(n-k)!}$.
3. If $X(h) \sim \operatorname{Poisson}(\lambda h)$, then
(a)

$$
P(X(h)=1)=\lambda h e^{-\lambda h}=\lambda h+\lambda h\left(e^{-\lambda h}-1\right)=\lambda h+o(h) .
$$

The latter equality holds because of

$$
\lim _{h \rightarrow 0} \frac{\lambda h\left(e^{-\lambda h}-1\right)}{h}=\lambda \lim _{h \rightarrow 0}\left(e^{-\lambda h}-1\right)=0 .
$$

(b)

$$
P(X(h)=0)=e^{-\lambda h}=1-\lambda h+\left(e^{-\lambda h}-1+\lambda h\right)=1-\lambda h+o(h)
$$

Indeed, by the L'Hopital rule (Calculus I):

$$
\lim _{h \rightarrow 0} \frac{e^{-\lambda h}-1+\lambda h}{h}=\lim _{h \rightarrow 0} \frac{-\lambda e^{-\lambda h}+\lambda}{1}=\lambda \lim _{h \rightarrow 0}\left(1-e^{-\lambda h}\right)=0
$$

and hence $e^{-\lambda h}-1+\lambda h=o(h)$.
(c)

$$
\begin{aligned}
P(X(h) \geq 2) & =1-P(X(h)<2) \\
& =1-P(X(h)=0)-P(X(h)=1) \\
& =1-[1-\lambda h+o(h)]-\lambda h-o(h) \\
& =o(h)
\end{aligned}
$$

4. If 1 hour is one unit of time, then 30 minutes is half a unit.
$A=$ "one customer entered the store in $0<t \leq 1$ "
$W_{1}=$ the time (in hours) till the first customer enters the store.
The probability in question is the conditional probability $P\left(\left.W_{1} \leq \frac{1}{2} \right\rvert\, A\right)$. Notice that

$$
P\left\{\left.W_{1} \leq \frac{1}{2} \right\rvert\, A\right\}=P\{X(0.5)=1 \mid X(1)=1\}=\frac{1}{2}
$$

because this conditional r. v. has a Binomial distribution with parameters ($1,0.5$). (Since $n=1$, it is in fact a Bernoulli distribution.)
5. (a) P.d.f. for W_{1} conditioned by the event $X(t)=n$.

Obviously $0<W_{1}<t$ given that n events occur in ($\left.0, t\right]$. Therefore, the conditional p.d.f. for W_{1} vanishes outside the interval $[0, t]$. If $0<y<t$, then

$$
P\left\{W_{1}>y \mid X(t)=n\right\}=P\{X(y)=0 \mid X(t)=n\}=\left(1-\frac{y}{t}\right)^{n} .
$$

Hence the p.d.f. for W_{1} conditioned by the event $X(t)=n$ is given by

$$
f_{W_{1} \mid(X(t)=n)}(y)=-\frac{d\left(1-\frac{y}{t}\right)^{n}}{d y}=\frac{n}{t}\left(1-\frac{y}{t}\right)^{n-1} .
$$

(b)

$$
\begin{aligned}
E\left(W_{1} \mid X(t)=n\right) & =\int_{0}^{t} w f_{W_{1} \mid(X(t)=n)}(w) d w=\int_{0}^{t} n \frac{w}{t}\left(1-\frac{w}{t}\right)^{n-1} d w \\
& =\operatorname{tn} \int_{0}^{1} x(1-x)^{n-1} d x
\end{aligned}
$$

and integrating by parts

$$
\begin{aligned}
E\left(W_{1} \mid X(t)=n\right) & =-t \int_{0}^{1} x d(1-x)^{n-1} \\
& =-\left.t x(1-x)^{n-1}\right|_{x=0} ^{x=1}+t \int_{0}^{1}(1-x)^{n} d x \\
& =\frac{t}{n+1} .
\end{aligned}
$$

(c) Limiting (conditional) distribution for W_{1} in the limit when $t \rightarrow \infty$ and $n=\beta t$.

$$
\begin{aligned}
f_{W_{1} \mid(X(t)=n)}(w) & =\frac{n}{t}\left(1-\frac{w}{t}\right)^{n-1} \\
& =\beta\left(1-\frac{\beta w}{n}\right)^{n-1} \quad\left[\text { since } t=\frac{n}{\beta}\right] \\
& \rightarrow \beta e^{-\beta w}, \text { when } n \rightarrow \infty .
\end{aligned}
$$

Hence the limiting distribution is exponential with parameter β.
6. $F\left(W_{1}, W_{2}, W_{3}, W_{4}, W_{5}\right)=W_{1}+W_{2}+W_{3}+W_{4}+W_{5}$ is a symmetric function of its arguments. By the Theorem stated in the Hint,

$$
\begin{aligned}
E\left(W_{1}+W_{2}+W_{3}+W_{4}+W_{5} \mid X(1)=5\right) & =E\left(U_{1}+U_{2}+U_{3}+U_{4}+U_{5}\right) \\
& =5 \times E(\operatorname{Uniform}([0,1]))=\frac{5}{2},
\end{aligned}
$$

where the random variables $U_{k}, k=1, \ldots, 5$, are independent and uniformly distributed on $[0,1]$.

