Probability III - 2008/09

Solutions to Exercise Sheet 5

1. Let us agree that the state space of the chain is $S=\{1,2,3,4,5,6\}$.

Transient and recurrent states. State 6 is absorbing and therefore recurrent.
States 3 and 5 form an equivalence class. This class is absorbing since the only allowed transition from state 3 is to state 5 and the only allowed transition from state 5 is to state 2. Once in one of these two states, the process will oscillate between them indefinitely (and periodically). Therefore states 2 and 4 are recurrent.

Remember that, by definition, a state i is transient if the probability for a MC starting from i not to return to i is positive. Note now that

$$
\begin{gathered}
P\left\{X_{n} \text { never returns to } 1 \mid X_{0}=1\right\} \geq p_{16}=\frac{1}{3}>0, \\
P\left\{X_{n} \text { never returns to } 2 \mid X_{0}=2\right\} \geq p_{21} p_{16}=\frac{1}{6}>0, \\
P\left\{X_{n} \text { never returns to } 4 \mid X_{0}=4\right\} \geq p_{46}=\frac{1}{4}>0
\end{gathered}
$$

and these inequalities imply that the states $1,2,4$ are transient. (In other words, we used the fact that the pathes $1 \rightarrow 6,2 \rightarrow 1 \rightarrow 6$, and $4 \rightarrow 6$ have positive probabilities which means that the MC starting from 1,2 or 4 will be trapped in 6 before returning to 1,2 , 4 respectively.)

Irreducibility. Remember that a MC is irreducible if all states of this chain intercommunicate with each other. Since state 6 communicates only with itself, the chain is not irreducible.
(We also saw that each of the two states $\{3,5\}$ is not intercommunicating with any of the states $1,2,4,6$ which gives another proof of the fact that this MC is reducible.)

Equilibrium distributions. A finite MC always has at least one equilibrium distribution (however, it may not have a limiting distribution!).
As usual, the equilibrium distribution $\underline{w}=\left(w_{1}, w_{2}, w_{3}, w_{4}, w_{5}, w_{6}\right)$ can be found from the equations $\underline{w} \mathbf{P}=\underline{w}$ and $\sum_{j=1}^{6} w_{j}=1$. By solving these equations (do it!) we obtain that $\underline{w}=(0,0, a, 0, a, b)$, where a, b are any real numbers such that $a \geq 0, b \geq 0,2 a+b=1$. The chain thus has infinitely many equilibrium distributions.
E. g., the "simplest" one is given by $\underline{w}=(0,0,0,0,0,1)$.

Exercises 1. Prove, using the first step analysis, that the probability of absorbtion for a process starting from one of these states is 1 .
Hint. For instance, if we put

$$
a_{i}=P\{\text { the MC } X(t) \text { would sometime reach } 2, \text { or } 4, \text { or } 5 . \mid X(0)=i\},
$$

then it followis from the first step analysis that $a_{0}=\frac{1}{3} a_{0}+\frac{2}{3}$, and hence $a_{0}=1$. Similarly, $a_{1}=\frac{1}{2} a_{0}+\frac{1}{4} a_{1}+\frac{1}{4}$ and $a_{3}=\frac{1}{4} a_{0}+\frac{1}{4} a_{1}+\frac{1}{2}$. Hence $a_{1}=a_{3}=1$.

Exercise 2. Let us change our matrix slightly:

$$
\left\|\begin{array}{|lccccc}
1 / 3 & 0 & 1 / 3 & 0 & 0 & 1 / 3 \\
1 / 2 & 1 / 4 & 1 / 4 & 0 & 0 & 0 \\
0 & 0 & 0.3 & 0 & 0.7 & 0 \\
1 / 4 & 1 / 4 & 1 / 4 & 0 & 0 & 1 / 4 \\
0 & 0 & 0.2 & 0 & 0.8 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right\|
$$

Which states are recurrent in this case? What is the difference between the behaviour of this MC and the one considered in the problem?
2. (i) The state 1 is recurrent because it is absorbing.

The states 2 and 3 are transient because

$$
\begin{aligned}
& P\left\{\text { not to return to } 2 \mid X_{0}=2\right\} \geq p_{21}=0.3>0, \\
& P\left\{\text { not to return to } 3 \mid X_{0}=3\right\} \geq p_{31}=0.4>0
\end{aligned}
$$

(ii) (a) We are going to use the following formulae which were derived in lectures:

$$
f_{i}^{(n-1)}=p_{i i}^{(n)}-\sum_{k=1}^{n-1} f_{i}^{(k)} p_{i i}^{(n-k)}
$$

To do this, we have to calculate $p_{i i}^{(n)}$ for $i=2$ and n taking values $1,2,3$. In other words, we have to find the relevant elements of \mathbb{P}^{2} and \mathbb{P}^{3}. Here is the calculation:

$$
\mathbb{P}^{2}=\left\|\begin{array}{ccc}
1 & 0 & 0 \\
0.3 & 0.3 & 0.4 \\
0.4 & 0.2 & 0.4
\end{array}\right\|\left\|\begin{array}{ccc}
1 & 0 & 0 \\
0.3 & 0.3 & 0.4 \\
0.4 & 0.2 & 0.4
\end{array}\right\|=\left\|\begin{array}{ccc}
1 & 0 & 0 \\
0.55 & 0.17 & 0.28 \\
* & * & *
\end{array}\right\|
$$

and

$$
\mathbb{P}^{3}=\mathbb{P}^{2} \mathbb{P}=\left\|\begin{array}{ccc}
1 & 0 & 0 \\
0.55 & 0.17 & 0.28 \\
* & * & *
\end{array}\right\|\left\|\begin{array}{ccc}
1 & 0 & 0 \\
0.3 & 0.3 & 0.4 \\
0.4 & 0.2 & 0.4
\end{array}\right\|=\left\|\begin{array}{ccc}
1 & 0 & 0 \\
* & 0.107 & * \\
* & * & *
\end{array}\right\|
$$

(Remark that we do only the necessary calculations!). Hence

$$
\begin{gathered}
f_{2}^{(1)}=p_{22}=0.3 \\
f_{2}^{(2)}=p_{22}^{(2)}-f_{2}^{(1)} p_{22}^{(1)}=0.17-0.09=0.08 \\
f_{2}^{(3)}=p_{22}^{(3)}-f_{2}^{(1)} p_{22}^{(2)}-f_{2}^{(2)} p_{22}^{(1)}=0.107-0.3 \times 0.17-0.08 \times 0.3=0.032
\end{gathered}
$$

(b) As the hint suggests, we consider the event

$$
B=\left\{X_{n} \text { will reach } 2 \text { before being absorbed by } 1\right\}
$$

and note that, by the FSA, we have

$$
\begin{aligned}
\beta_{2} & =\sum_{j=1}^{3} p_{2, j} P\left\{B \mid X_{1}=j\right\}=p_{2,2} P\left\{B \mid X_{1}=2\right\}+p_{2,3} P\left\{B \mid X_{1}=3\right\} \\
& =p_{2,2} \beta_{2}+p_{2,3} P\left\{B \mid X_{0}=3\right\}
\end{aligned}
$$

Hence $\beta_{2}=p_{2,2} \beta_{2}+p_{2,3} P\left\{B \mid X_{0}=3\right\}$ and

$$
\beta_{2}=\frac{p_{2,3}}{1-p_{2,2}} P\left\{B \mid X_{0}=3\right\}
$$

Next, set $u_{i}=P\left\{B \mid X_{0}=i\right\}$. Then by the FSA

$$
\begin{aligned}
& u_{1}=0 \\
& u_{2}=1 \\
& u_{3}=\sum_{j=1}^{3} p_{3, j} u_{j}=0.2+0.4 u_{3}
\end{aligned}
$$

and hence $u_{3}=\frac{1}{3}$ and $\beta_{2}=\frac{p_{2,3}}{1-p_{2,2}} \times \frac{1}{3}=\frac{4}{21}$.
(iii) As we know, $\beta_{2}=\frac{U}{1+U}$ and hence $U=\frac{\beta_{2}}{1-\beta_{2}}=\frac{4}{17}$.
(iv) We proved in lectures (see also notes) that $E(M)=\frac{\beta_{2}}{1-\beta_{2}}=\frac{4}{17}$.
3. It is evident from the transition matrix that $0 \leftrightarrow 2,4 \leftrightarrow 5$, and $1 \leftrightarrow 3$. Since $p_{00}+p_{04}=1$ and $p_{01}+p_{44}=1$, it is impossible to reach from any of the states $\{0,2\}$ any of the other states. Similarly, it is impossible to reach from any of the states $\{4,5\}$ any of the other states.

Thus, the state space is partitioned into three equivalence classes: $\{0,2\},\{4,5\}$, and $\{1,3\}$.
Note that $\{0,2\},\{1,3\}$ are two classes of recurrent states whereas $\{4,5\}$ is a transient class. Why?

