Probability III - 2008/09

Solutions to Exercise Sheet 4

1. Write \mathbb{P} as

$$
\mathbb{P}=\left\|\begin{array}{ccccc}
0 & + & + & 0 & 0 \\
+ & 0 & + & 0 & 0 \\
+ & + & 0 & + & 0 \\
0 & 0 & + & 0 & + \\
+ & 0 & 0 & + & 0
\end{array}\right\|
$$

Then

$$
\begin{aligned}
& \mathbb{P}^{2}=\left\|\begin{array}{lllll}
+ & + & + & + & 0 \\
+ & + & + & + & 0 \\
+ & + & + & 0 & + \\
+ & + & 0 & + & 0 \\
0 & + & + & 0 & +
\end{array}\right\| \\
& \mathbb{P}^{4}=\left\|\begin{array}{lllll}
+ & + & + & + & + \\
+ & + & + & + & + \\
+ & + & + & + & + \\
+ & + & + & + & 0 \\
+ & + & + & + & +
\end{array}\right\|
\end{aligned}
$$

and

$$
\mathbb{P}^{5}=\mathbb{P P}^{4}=\left\|\begin{array}{lllll}
+ & + & + & + & + \\
+ & + & + & + & + \\
+ & + & + & + & + \\
+ & + & + & + & + \\
+ & + & + & + & +
\end{array}\right\|
$$

Therefore \mathbb{P} is regular.
The $\pi_{i}, i=0,1,2,3,4$, satisfy the equations

$$
\begin{aligned}
& \pi_{0}+\pi_{1}+\pi_{2}+\pi_{3}+\pi_{4}=1 \\
& \pi_{0}=\pi_{1} / 2+\pi_{2} / 3+\pi_{4} / 2 \\
& \pi_{1}=\pi_{0} / 2+\pi_{2} / 3 \\
& \pi_{2}=\pi_{0} / 2+\pi_{1} / 2+\pi_{3} / 2 \\
& \pi_{3}=\pi_{2} / 3+\pi_{4} / 2 \\
& \pi_{4}=\pi_{3} / 2
\end{aligned}
$$

We can solve, for example, the equations

$$
\begin{aligned}
& \pi_{0}+\pi_{1}+\pi_{2}+\pi_{3}+\pi_{4}=1 \\
& \pi_{1}=\pi_{0} / 2+\pi_{2} / 3 \\
& \pi_{2}=\pi_{0} / 2+\pi_{1} / 2+\pi_{3} / 2 \\
& \pi_{3}=\pi_{2} / 3+\pi_{4} / 2 \\
& \pi_{4}=\pi_{3} / 2
\end{aligned}
$$

We will solve for $\pi_{0}, \pi_{1}, \pi_{2}$ and π_{4} in terms of π_{3}; the rest is easy.
We already have $\pi_{4}=\pi_{3} / 2$. The fourth equation gives $\pi_{2} / 3=\pi_{3}-\pi_{4} / 2=\pi_{3}-\pi_{3} / 4$ or $\pi_{2}=9 \pi_{3} / 4$. Subtracting the third equation from the second and solving for π_{1} gives $\pi_{1}=8 \pi_{2} / 9-\pi_{3} / 3=5 \pi_{3} / 3$. Solving for π_{0} in the first equation gives $\pi_{0}=2 \pi_{1}-2 \pi_{2} / 3=11 \pi_{3} / 6$.
Substituting these expressions into the first equation gives

$$
\pi_{3}\left(\frac{11}{6}+\frac{5}{3}+\frac{9}{4}+1+\frac{1}{2}\right)=1
$$

so $\pi_{3}=\frac{12}{87}=\frac{4}{29}$. The expressions give $\pi_{0}=\frac{22}{87}, \pi_{1}=\frac{20}{87}, \pi_{2}=\frac{9}{29}, \pi_{4}=\frac{2}{29}$.
2. By solving the equations

$$
\begin{gathered}
\pi_{0}+\pi_{1}+\pi_{2}=1 \\
\pi_{0}=0.3 \pi_{0}+0.2 \pi_{1}+0.4 \pi_{2} \\
\pi_{1}= \\
0.5 \pi_{0}+0.7 \pi_{1}+0.2 \pi_{2}
\end{gathered}
$$

one finds that $\pi_{0}=\frac{16}{61}, \pi_{1}=\frac{34}{61}, \pi_{2}=\frac{11}{61}$.
Now,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} P\left(X_{n-1}=1 \mid X_{n}=2\right) & =\lim _{n \rightarrow \infty} \frac{P\left(X_{n-1}=1, X_{n}=2\right)}{P\left(X_{n}=2\right)} \\
& =\lim _{n \rightarrow \infty} \frac{P\left(X_{n-1}=1\right) P\left(X_{n}=2 \mid X_{n-1}=1\right)}{P\left(X_{n}=1\right)} \\
& =\lim _{n \rightarrow \infty} \frac{P\left(X_{n-1}=1\right) p_{1,2}}{P\left(X_{n}=2\right)} \\
& =p_{1,2} \lim _{n \rightarrow \infty} \frac{P\left(X_{n-1}=1\right)}{P\left(X_{n}=2\right)} \\
& =\frac{p_{1,2} \pi_{1}}{\pi_{2}} \\
& =\frac{1}{10} \times \frac{34}{61} \times \frac{61}{11}=\frac{17}{55}
\end{aligned}
$$

3. a) The equations are

$$
\begin{aligned}
& \pi_{0}+\pi_{1}+\pi_{2}+\pi_{3}=1 \\
\pi_{0}= & 0.2 \pi_{0}+0.5 \pi_{1}+0.2 \pi_{2}+0.1 \pi_{3} \\
\pi_{1}= & 0.2 \pi_{0}+0.2 \pi_{1}+0.3 \pi_{2}+0.2 \pi_{3} \\
\pi_{2}= & 0.4 \pi_{0}+0.2 \pi_{1}+0.4 \pi_{2}+0.4 \pi_{3}
\end{aligned}
$$

Solving these equations gives $\pi_{0}=\frac{13}{51}, \pi_{1}=\frac{12}{51}, \pi_{2}=\frac{18}{51}, \pi_{3}=\frac{8}{51}$.
b) In the long run the probability that the process is out-of-control is $\pi_{2}+\pi_{3}=\frac{26}{51}$.
4. Let X_{n} be the number of balls in urn A. It is clear that the distribution of X_{n+1} depends only on the value of X_{n} (and does not depend on the values of $X_{k}, k \leq n-1$. Hence X_{n} is a MC. Since each urn can be chosen with probability 0.5 , the transition probabilities are given by

$$
p_{i, i+1}=p_{i, i-1}=\frac{1}{2} \text { if } i=1,2,3,4 ; \quad p_{0,1}=p_{0,0}=p_{5,4}=p_{5,5}=\frac{1}{2}
$$

or, equivalently, by

$$
\mathbb{P}=\left(\begin{array}{cccccc}
0.5 & 0.5 & 0 & 0 & 0 & 0 \\
0.5 & 0 & 0.5 & 0 & 0 & 0 \\
0 & 0.5 & 0 & 0.5 & 0 & 0 \\
0 & 0 & 0.5 & 0 & 0.5 & 0 \\
0 & 0 & 0 & 0.5 & 0 & 0.5 \\
0 & 0 & 0 & 0 & 0.5 & 0.5
\end{array}\right)
$$

It is easy to check that the equilibrium distribution is given by $\underline{w}=\left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right)$. Hence, for large values of time n, the fraction of time the MC spends in the state 0 (urn A is empty) is $\frac{n_{0}}{n} \simeq \frac{1}{6}$.

