Probability III - 2008/09

Solutions to Exercise Sheet 2

1. a) Take $S=\{0,1,2,3,4,5\}$ as the state space of the random process X_{t} with $X_{t}=i$ indicating that the discount is $10 \% i$ at the end of the year t. We set $X_{0}=0$ as there is no discount initially. The X_{t} forms a MC since we can find the relevant transition probabilities. Namely, if $X_{t}=i$ then either $X_{t+1}=0$ with probability p (the claim was made during the year $t+1$) or $X_{t+1}=\min (i+1,5)$ with probability $1-p$ (no claims during the year $t+1$).
b) We already know that $p_{i 0}=p$ for any $i \in S, p_{55}=1-p$, and $p_{i, i+1}=1-p$ if $0 \leq i \leq 4$. Hence

$$
\mathbb{P}=\left(\begin{array}{cccccc}
p & 1-p & 0 & 0 & 0 & 0 \\
p & 0 & 1-p & 0 & 0 & 0 \\
p & 0 & 0 & 1-p & 0 & 0 \\
p & 0 & 0 & 0 & 1-p & 0 \\
p & 0 & 0 & 0 & 0 & 1-p \\
p & 0 & 0 & 0 & 0 & 1-p
\end{array}\right)
$$

c) The probability that $X_{4}=2$ given that $X_{0}=0$ can be found by considering all paths of length 4 from state 0 to state 2 . We obtain
$P\left\{X_{4}=2 \mid X_{0}=0\right\}=p_{00} p_{00} p_{01} p_{12}+p_{01} p_{10} p_{01} p_{12}=p^{2}(1-p)^{2}+(1-p) p(1-p)^{2}=p(1-p)^{2}$.
d) The answer is $P\left\{X_{16}=0\right\}=p$. Indeed, we have
$P\left\{X_{16}=0\right\}=\sum_{i=0}^{5} P\left\{X_{15}=i\right\} P\left\{X_{16}=0 \mid X_{15}=i\right\}=\sum_{i=0}^{5} P\left\{X_{15}=i\right\} p_{i 0}=p \sum_{i=0}^{5} P\left\{X_{15}=i\right\}=p$
since $p_{i 0}=p$ for all i and $\sum_{i=0}^{5} P\left\{X_{15}=i\right\}=1$.
2. This question is best tackled using first step analysis.
a) Let v_{i} be the expected time to absorbtion starting from state i. Writing T for the absorbtion time, we set

$$
v_{i}=E\left(T \mid X_{0}=i\right) .
$$

Using first step analysis (see lecture notes for more details) we obtain the equations

$$
v_{0}=\sum_{k=0}^{2} p_{0 k} E\left(T \mid X_{0}=0, X_{1}=k\right)=\sum_{k=0}^{2} p_{0 k}\left(1+E\left(T \mid X_{0}=k\right)\right)=\sum_{k=0}^{2} p_{0 k}\left(1+v_{k}\right)
$$

We use here that $E\left(T \mid X_{0}=0, X_{1}=k\right)=1+E\left(T \mid X_{1}=k\right)$ and $E\left(T \mid X_{1}=k\right)=E\left(T \mid X_{0}=\right.$ $k)=v_{k}$.
Similarly

$$
v_{1}=\sum_{k=0}^{2} p_{1 k} E\left(T \mid X_{0}=0, X_{1}=k\right)=\sum_{k=0}^{2} p_{1 k}\left(1+v_{k}\right)
$$

Taking into account that $E\left(T \mid X_{0}=2\right)=0$ and using the values $p_{i j}$ from the transition matrix we obtain

$$
\begin{aligned}
& v_{0}=1+0.2 v_{1} \\
& v_{1}=1+0.25 v_{0}+0.4 v_{1} .
\end{aligned}
$$

These equations are easily solved to give $v_{0}=\frac{16}{11}$ (and $v_{1}=\frac{25}{11}$).
ii) Let w_{i} be the expected number of visits to state 1 before absorbtion starting from state i. We write T for the absorbtion time. We now use the general method described in lectures with $f(1)=1$ and $f(0)=f(2)=0$. Then the number of visits to 1 before absorbtion is given by

$$
F=f\left(X_{0}\right)+f\left(X_{1}\right)+\ldots+f\left(X_{T}\right)
$$

since the j-th term in this sum is 1 if $X_{j}=1$ and is 0 otherwise. Then $w_{i}=E\left(F \mid X_{0}=i\right)$ and equations for w_{i} are as follows:

$$
\begin{aligned}
& w_{0}=f(0)+p_{00} w_{0}+p_{01} w_{1}+p_{02} w_{2} \\
& w_{1}=f(1)+p_{10} w_{0}+p_{11} w_{1}+p_{12} w_{2}
\end{aligned}
$$

Taking into account that $w_{2}=0$ (by the definition of this quantity), we obtain

$$
\begin{aligned}
& w_{0}=0.2 w_{1} \\
& w_{1}=1+0.25 w_{0}+0.4 w_{1}
\end{aligned}
$$

These equations are easily solved to give $w_{0}=\frac{4}{11}\left(\right.$ and $\left.w_{1}=\frac{20}{11}\right)$.
iii) Let g_{i} be your expected gain up to absorbtion starting from state i. Using the same method but this time with $f(0)=-3, f(1)=5, f(2)=0$ we obtain

$$
\begin{aligned}
& g_{0}=-3+0.2 g_{1} \\
& g_{1}=5+0.25 g_{0}+0.4 g_{1} .
\end{aligned}
$$

Solving these equation we obtain $g_{0}=-\frac{16}{11}$ (which in fact is a loss whereas $g_{1}=\frac{85}{11}$ could be a gain had our process started at 1).
3. Our state space $S=\{0,5,6,(56),(65)\}$. In order to be ale to write $p_{i j}, 0 \leq i, j \leq 4$ rather than for instance $p_{5,(56)}$ we shall first of all change the notations for our states. Namely we set $S=(0,1,2,3,4,5)$ where the one to one correspondence is as follows: $0 \leftrightarrow 0,5 \leftrightarrow 1$, $6 \leftrightarrow 2,(56) \leftrightarrow 3,(65) \leftrightarrow 4$. The non-zero transition probabilities are then given by
$p_{00}=\frac{2}{3}, p_{01}=p_{02}=\frac{1}{6}, p_{10}=p_{20}=\frac{2}{3}, p_{11}=p_{22}=\frac{1}{6}, p_{13}=p_{24}=\frac{1}{6}, p_{33}=p_{44}=1$ (explain these numbers - this is easy!). Thus

$$
\mathbb{P}=\left(\begin{array}{ccccc}
\frac{2}{3} & \frac{1}{6} & \frac{1}{6} & 0 & 0 \\
\frac{2}{3} & \frac{1}{6} & 0 & \frac{1}{6} & 0 \\
\frac{2}{3} & 0 & \frac{1}{6} & 0 & \frac{1}{6} \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

Let X_{n} be a MC with the above transition matrix. The questions we are interested in can now be stated as follows:
a) What is the expected time of absorbtion of our chain if $X_{0}=0$?
b) What is the probability that the chain starting from 0 will be absorbed by state 3 (rather than 4).
We first answer a). Set $v_{i}=E\left(T \mid X_{0}=i\right)$ and $f(0)=f(1)=f(2)=1$ and $f(3)=f(4)=0$. We then have

$$
T=f\left(X_{0}\right)+f\left(X_{1}\right)+\ldots+f\left(X_{T}\right)
$$

and the v_{i} satisfy the equations

$$
\begin{aligned}
& v_{0}=1+\frac{2}{3} v_{0}+\frac{1}{6} v_{1}+\frac{1}{6} v_{2} \\
& v_{1}=1+\frac{2}{3} v_{0}+\frac{1}{6} v_{1}+\frac{1}{6} v_{3} \\
& v_{2}=1+\frac{2}{3} v_{0}+\frac{1}{6} v_{2}+\frac{1}{6} v_{4}
\end{aligned}
$$

Since we know that $v_{3}=v_{4}=0$ we easily find that $v_{0}=21$ (and $v_{1}=v_{2}=18$).
Let us now consider b). Set $u_{i}=P\left\{X_{T}=3 \mid X_{0}=i\right\}$ and note that if we choose this time f so that $f(0)=f(1)=f(2)=f(4)=0$ and $f(3)=1$, then

$$
E\left(f\left(X_{0}\right)+f\left(X_{1}\right)+\ldots+f\left(X_{T}\right) \mid X(0)=i\right)=E\left(f\left(X_{T}\right) \mid X(0)=i\right)=P\left\{X_{T}=3 \mid X_{0}=i\right\}=u_{i}
$$

(we repeat, for this particular case, the argument which has been discussed in lectures and can be looked up in the notes concerning the FSA). We thus have

$$
\begin{aligned}
& u_{0}=\frac{2}{3} u_{0}+\frac{1}{6} u_{1}+\frac{1}{6} u_{2} \\
& u_{1}=\frac{2}{3} u_{0}+\frac{1}{6} u_{1}+\frac{1}{6} u_{3} \\
& u_{2}=\frac{2}{3} u_{0}+\frac{1}{6} u_{2}+\frac{1}{6} u_{4}
\end{aligned}
$$

This time $u_{3}=1, u_{4}=0$. Solving now the equations gives $u_{0}=\frac{1}{2}, u_{1}=\frac{3}{5}, u_{2}=\frac{2}{5}$.

Please let me know if you have any comments or corrections

