Probability III - 2007/08

Solutions to Exercise Sheet 7

1. In the fast mode we have an $M(1) / M(2) / 1$ queue. In the slow mode we have an $M(1) / M\left(\frac{6}{5}\right) / 1$ queue. We know from lectures that the number of customers in an $M(\lambda) / M(\mu) / 1$ queue in the long run has distribution $\operatorname{Geom}(1-\rho)$ where $\rho=\frac{\lambda}{\mu}$. So the mean queue length is approximately $\frac{\rho}{1-\rho}$.
For the fast mode the mean queue length is therefore close to $\frac{1 / 2}{1-1 / 2}=1$. Whereas, for the slow mode the mean queue length is approximately $\frac{5 / 6}{1-5 / 6}=5$.
2. Let $Q(t)$ be the length of the queue at time t. From lectures we know that there is a limiting distribution. That is

$$
\mathbb{P}(Q(t)=i) \rightarrow w_{i}
$$

where

$$
w_{0}=\frac{1-\rho}{1+\rho}
$$

and

$$
w_{n}=2 \rho^{n} \frac{1-\rho}{1+\rho}
$$

for all $n \geq 1$. Armed with this we can answer the question. Noting that $\rho=\frac{1}{4}$ for our queue.
(You should make sure that you can derive this limiting distribution although I am happy for you to quote it if you are not specifically asked for a derivation.)
i) This is just

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \mathbb{P}(Q(t)=0) & =w_{0} \\
& =\frac{3}{5} .
\end{aligned}
$$

ii) This is clearly the complimentary event to part i) and so its probability is $1-\frac{3}{5}=\frac{2}{5}$.
iii) Here we want

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \mathbb{P}(Q(t) \geq 2) & =1-w_{0}-w_{1} \\
& =1-\frac{3}{5}-\frac{3}{10} \\
& =\frac{1}{10} .
\end{aligned}
$$

iv) There are 2 customers waiting to be served at time t if and only if $Q(t)=4$ (2 are being served and 2 are waiting to be served). Thus, we want

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \mathbb{P}(Q(t)=4) & =w_{4} \\
& =2 \frac{1}{4^{4}} \frac{3}{5} \\
& =\frac{3}{640} .
\end{aligned}
$$

3. This is very similar to finding the equlibrium distribution for the $M(\lambda) / M(\mu) / 2$ queueing system.
First, note that the $M(\lambda) / M(\mu) / 3$ queueing system is a birth-death process with parameters $\lambda_{k}=\lambda$ for all $k \geq 0, \mu_{0}=0, \mu_{1}=\mu, \mu_{2}=2 \mu, \mu_{k}=3 \mu$ for all $k \geq 3$. As before, we know that if this birth-death process has an equilibrium distribution then it must satisfy

$$
w_{i}=\frac{\lambda_{0} \lambda_{1} \ldots \lambda_{i-1}}{\mu_{1} \mu_{2} \ldots \mu_{i}} w_{0} .
$$

Hence we must have

$$
\begin{aligned}
& w_{1}=\frac{\lambda}{\mu} w_{0}, \\
& w_{2}=\frac{\lambda^{2}}{2 \mu^{2}} w_{0}, \\
& w_{3}=\frac{\lambda^{3}}{6 \mu^{3}} w_{0}, \\
& w_{4}=\frac{\lambda^{4}}{18 \mu^{4}} w_{0},
\end{aligned}
$$

and so on. (Make sure that you can see why this follows from result on the equilibrium distribution of the birth-death process).
More generally,

$$
\begin{aligned}
& w_{1}=\frac{\lambda}{\mu} w_{0}, \\
& w_{n}=\left(\frac{\lambda}{3 \mu}\right)^{n} \frac{9}{2} w_{0},
\end{aligned}
$$

for all $n \geq 2$.
For this to be an equilibrium distribution we must also have $\sum_{i \geq 0} w_{i}=1$. That is

$$
w_{0}\left(1+\frac{\lambda}{\mu}+\frac{9}{2} \sum_{i \geq 2}\left(\frac{\lambda}{3 \mu}\right)^{i}\right)=1 .
$$

We can do this if $\frac{\lambda}{3 \mu}<1$. In this case, letting $\rho=\frac{\lambda}{3 \mu}$, we must take

$$
\begin{aligned}
w_{0} & =\left(1+3 \rho+\frac{9}{2} \frac{\rho^{2}}{1-\rho}\right)^{-1} \\
& =\frac{1-\rho}{1-\rho+3 \rho-3 \rho^{2}+\frac{9}{2} \rho^{2}} \\
& =\frac{2-2 \rho}{3 \rho^{2}+4 \rho+2} .
\end{aligned}
$$

We deduce that the equilibrium distribution is

$$
w_{i}= \begin{cases}\frac{2-2 \rho}{3 \rho^{2}+4 \rho+2} & \text { if } i=0 . \\ 3 \rho \frac{2-2 \rho}{3 \rho^{2}+4 \rho+2} & \text { if } i=1 . \\ \frac{9}{2} \rho^{i} \frac{2-2 \rho}{3 \rho^{2}+4 \rho+2} & \text { if } i \geq 2 .\end{cases}
$$

4. Since the service times are all exactly d, we have that $Q(t)$ is just the number of customers who arrived in the interval $(t-d, t]$. Since the arrivals form a Poisson process this is distributed $\operatorname{Po}(d \lambda)$. Simple as that.
5. Let $S_{1}, S_{2}, \ldots, S_{n}$ denote the service times of the n customers who are in the system when the customer in question arrives. The arriving customer has to wait for time $T=$ $S_{1}+S_{2}+\cdots+S_{n}$ to be served (you might have interpreted the question as asking for the total time waiting in the system in which case you'd have an S_{n+1} term representing the new customers service time - sorry for the ambiguity). We know that the S_{i} are independent and each is distributed $\operatorname{Exp}(\mu)$, and so

$$
\begin{aligned}
\mathbb{E}(T) & =n \mathbb{E}\left(S_{1}\right) \\
& =\frac{n}{\mu} .
\end{aligned}
$$

I should have said for the second part that we assume that $\lambda<\mu$ so that the equilibrium distribution exists.
Let T_{E} the time a new customer waits at equilibrium. We use the fact that

$$
\begin{aligned}
\mathbb{E}\left(T_{E}\right) & =\sum_{n \geq 0} \mathbb{E}(\text { time to wait } \mid Q(t)=n) \mathbb{P}(Q(t)=n) \\
& =\sum_{n \geq 0} \frac{n}{\mu} w_{n}
\end{aligned}
$$

where w_{n} is the equilibrium distribution, and we have used the first part of the question for the conditional expectation. Hence

$$
\mathbb{E}\left(T_{E}\right)=\frac{1}{\mu} \sum_{n \geq 0} n(1-\rho) \rho^{n} .
$$

The sum is the expectation of a Geom $(1-\rho)$ random variable and so,

$$
\mathbb{E}\left(T_{E}\right)=\frac{1}{\mu} \frac{1}{1-\rho}=\frac{1}{\mu-\lambda} .
$$

If you had assumed the question asked for expectation of the total time waiting you would obviously have got $\frac{1}{\mu-\lambda}+\frac{1}{\mu}$.

Please let me know if you have any comments or corrections

