Probability III – 2007/08

Solutions to Exercise Sheet 7

1. In the fast mode we have an M(1)/M(2)/1 queue. In the slow mode we have an $M(1)/M(\frac{6}{5})/1$ queue. We know from lectures that the number of customers in an $M(\lambda)/M(\mu)/1$ queue in the long run has distribution $Geom(1-\rho)$ where $\rho = \frac{\lambda}{\mu}$. So the mean queue length is approximately $\frac{\rho}{1-\rho}$.

For the fast mode the mean queue length is therefore close to $\frac{1/2}{1-1/2} = 1$. Whereas, for the slow mode the mean queue length is approximately $\frac{5/6}{1-5/6} = 5$.

2. Let Q(t) be the length of the queue at time t. From lectures we know that there is a limiting distribution. That is

$$\mathbb{P}(Q(t)=i)\to w_i,$$

where

$$w_0 = \frac{1 - \rho}{1 + \rho},$$

and

$$w_n = 2\rho^n \frac{1-\rho}{1+\rho}$$

for all $n \ge 1$. Armed with this we can answer the question. Noting that $\rho = \frac{1}{4}$ for our queue.

(You should make sure that you can derive this limiting distribution although I am happy for you to quote it if you are not specifically asked for a derivation.)

i) This is just

$$\lim_{t\to\infty} \mathbb{P}(Q(t) = 0) = w_0$$
$$= \frac{3}{5}.$$

- ii) This is clearly the complimentary event to part i) and so its probability is $1 \frac{3}{5} = \frac{2}{5}$.
- iii) Here we want

$$\lim_{t \to \infty} \mathbb{P}(Q(t) \ge 2) = 1 - w_0 - w_1$$
$$= 1 - \frac{3}{5} - \frac{3}{10}$$
$$= \frac{1}{10}.$$

1

iv) There are 2 customers waiting to be served at time t if and only if Q(t) = 4 (2 are being served and 2 are waiting to be served). Thus, we want

$$\lim_{t\to\infty} \mathbb{P}(Q(t) = 4) = w_4$$

= $2\frac{1}{4^4}\frac{3}{5}$
= $\frac{3}{640}$.

3. This is very similar to finding the equlibrium distribution for the $M(\lambda)/M(\mu)/2$ queueing system.

First, note that the $M(\lambda)/M(\mu)/3$ queueing system is a birth-death process with parameters $\lambda_k = \lambda$ for all $k \ge 0$, $\mu_0 = 0$, $\mu_1 = \mu$, $\mu_2 = 2\mu$, $\mu_k = 3\mu$ for all $k \ge 3$. As before, we know that if this birth-death process has an equilibrium distribution then it must satisfy

$$w_i = \frac{\lambda_0 \lambda_1 \dots \lambda_{i-1}}{\mu_1 \mu_2 \dots \mu_i} w_0.$$

Hence we must have

$$w_{1} = \frac{\lambda}{\mu}w_{0},$$

$$w_{2} = \frac{\lambda^{2}}{2\mu^{2}}w_{0},$$

$$w_{3} = \frac{\lambda^{3}}{6\mu^{3}}w_{0},$$

$$w_{4} = \frac{\lambda^{4}}{18\mu^{4}}w_{0},$$

and so on. (Make sure that you can see why this follows from result on the equilibrium distribution of the birth-death process).

More generally,

$$w_1 = \frac{\lambda}{\mu} w_0,$$

$$w_n = \left(\frac{\lambda}{3\mu}\right)^n \frac{9}{2} w_0,$$

for all $n \ge 2$.

For this to be an equilibrium distribution we must also have $\sum_{i\geq 0} w_i = 1$. That is

$$w_0 \left(1 + \frac{\lambda}{\mu} + \frac{9}{2} \sum_{i > 2} \left(\frac{\lambda}{3\mu} \right)^i \right) = 1.$$

We can do this if $\frac{\lambda}{3\mu}$ < 1. In this case, letting $\rho = \frac{\lambda}{3\mu}$, we must take

$$w_0 = \left(1 + 3\rho + \frac{9}{2} \frac{\rho^2}{1 - \rho}\right)^{-1}$$

$$= \frac{1 - \rho}{1 - \rho + 3\rho - 3\rho^2 + \frac{9}{2}\rho^2}$$

$$= \frac{2 - 2\rho}{3\rho^2 + 4\rho + 2}.$$

We deduce that the equilibrium distribution is

$$w_i = \begin{cases} \frac{2-2\rho}{3\rho^2 + 4\rho + 2} & \text{if } i = 0.\\ 3\rho \frac{2-2\rho}{3\rho^2 + 4\rho + 2} & \text{if } i = 1.\\ \frac{9}{2}\rho^i \frac{2-2\rho}{3\rho^2 + 4\rho + 2} & \text{if } i \ge 2. \end{cases}$$

- 4. Since the service times are all exactly d, we have that Q(t) is just the number of customers who arrived in the interval (t d, t]. Since the arrivals form a Poisson process this is distributed $Po(d\lambda)$. Simple as that.
- 5. Let $S_1, S_2, ..., S_n$ denote the service times of the n customers who are in the system when the customer in question arrives. The arriving customer has to wait for time $T = S_1 + S_2 + \cdots + S_n$ to be served (you might have interpreted the question as asking for the total time waiting in the system in which case you'd have an S_{n+1} term representing the new customers service time sorry for the ambiguity). We know that the S_i are independent and each is distributed $\text{Exp}(\mu)$, and so

$$\mathbb{E}(T) = n\mathbb{E}(S_1)$$
$$= \frac{n}{\mu}.$$

I should have said for the second part that we assume that $\lambda < \mu$ so that the equilibrium distribution exists.

Let T_E the time a new customer waits at equilibrium. We use the fact that

$$\mathbb{E}(T_E) = \sum_{n \ge 0} \mathbb{E}(\text{time to wait}|Q(t) = n) \mathbb{P}(Q(t) = n)$$
$$= \sum_{n \ge 0} \frac{n}{\mu} w_n$$

where w_n is the equilibrium distribution, and we have used the first part of the question for the conditional expectation. Hence

$$\mathbb{E}(T_E) = \frac{1}{\mu} \sum_{n \geq 0} n(1 - \rho) \rho^n.$$

The sum is the expectation of a $\text{Geom}(1-\rho)$ random variable and so,

$$\mathbb{E}(T_E) = \frac{1}{\mu} \frac{1}{1-\rho} = \frac{1}{\mu-\lambda}.$$

If you had assumed the question asked for expectation of the total time waiting you would obviously have got $\frac{1}{\mu-\lambda}+\frac{1}{\mu}$.

Please let me know if you have any comments or corrections