Probability III - 2007/08

Solutions to Exercise Sheet 6

1. For the first two parts all we need is that if k births have happened then the time until the next birth is as it would be in a Poisson process of rate $k \lambda$.
i) $\mathbb{P}($ no births in $(0,4])=e^{-4 \lambda_{0}}=e^{-12}$.
ii) $\mathbb{P}($ no births in $(5,6] \mid X(5)=3)=e^{-\lambda_{3}}=e^{-15}$.
iii) As for the Poisson process we have

$$
W_{i}=S_{0}+S_{1}+\cdots+S_{i-1}
$$

Each S_{i} is distributed exponentially with parameter λ_{i}, and so,

$$
\begin{aligned}
\mathbb{E}\left(W_{4}\right) & =\mathbb{E}\left(S_{0}\right)+\mathbb{E}\left(S_{1}\right)+\mathbb{E}\left(S_{2}\right)+\mathbb{E}\left(S_{3}\right) \\
& =\frac{1}{3}+\frac{1}{5}+\frac{1}{9}+\frac{1}{15} \\
& =\frac{32}{45} .
\end{aligned}
$$

2.

i) Essentially, the number of sales is the sum of independent Poisson processes. If $X(t)=k$ there are k purchasers each of which generates another purchaser according to a Poisson process of rate β The media advertising which generates another purchaser occording to a Poisson process of rate α. It follows that

$$
\mathbb{P}(X(t+h)=k+l \mid X(t)=k)= \begin{cases}\alpha h+k \beta h+o(h) & \text { if } l=1 \\ 1-\alpha h+k \beta h+o(h) & \text { if } l=0 \\ o(h) & \text { if } l>1 \\ 0 & \text { if } l<0\end{cases}
$$

These are all obvious apart from the $l=0$ case where the probability in question is

$$
(1-\alpha h)(1-\beta h)^{k}=1-\alpha h-k \beta h+o(h)
$$

as claimed.
The rest of the axioms for a birth process are easiy checked. Hence, we do have a birth process with parameters $\lambda_{k}=\alpha+k \beta$.
(Compare this with the linear birth process.)
ii) In lectures we derived the following differential equations:

$$
\begin{aligned}
p_{0}^{\prime}(t) & =-\lambda_{0} p_{0}(t) \\
p_{1}^{\prime}(t) & =\lambda_{0} p_{0}(t)-\lambda_{1} p_{1}(t) \\
p_{2}^{\prime}(t) & =\lambda_{1} p_{1}(t)-\lambda_{2} p_{2}(t) .
\end{aligned}
$$

(You could also think of these as a special case of the forwards equations, see question 5, with $i=0$ and $\mu_{k}=0$.)
iii) In lectures we showed that these differential equations always have a unique the solution. The method of that proof can be used to solve them.
Firstly, it is clear that the first equation has solution

$$
p_{0}(t)=C e^{-t} .
$$

Further, we know that $p_{0}(0)=1$ and so $C=1$. Hence,

$$
p_{0}(t)=e^{-t} .
$$

Rearranging the second equation gives

$$
\frac{d}{d t}\left(p_{1}(t) e^{\lambda_{1} t}\right)=e^{\lambda_{1} t} \lambda_{0} p_{0}(t)=e^{2 t}
$$

And so, integrating and using the boundary condition $p_{1}(0)=0$,

$$
p_{1}(t)=\frac{1}{2} e^{-t}-\frac{1}{2} e^{-3 t}
$$

Similarly, rearranging the third equation

$$
\frac{d}{d t}\left(p_{2}(t) e^{\lambda_{2} t}\right)=e^{\lambda_{2} t} \lambda_{1} p_{1}(t)=\frac{3}{2} e^{4 t}-\frac{3}{2} e^{2 t} .
$$

And so, integrating and using the boundary condition $p_{2}(0)=0$,

$$
p_{2}(t)=\frac{3}{8} e^{-t}-\frac{3}{4} e^{-3 t}+\frac{3}{8} e^{-5 t} .
$$

The required probability is $p_{2}(3)$ which is

$$
\frac{3}{8} e^{-3}-\frac{3}{4} e^{-9}+\frac{3}{8} e^{-15}
$$

3. The relevant result here is that the process explodes if and only if $\sum_{k \geq 0} \lambda_{k}^{-1}$ is finite. This is easily checked in each case.
a) $\sum_{k \geq 0} 2^{-k}=2$ so the process explodes.
b) $\sum_{k \geq 0} \frac{1}{9}$ is infinte so the process does not explode.
c) I should really have said $\lambda_{k}=7 k$ for $k \geq 1, \lambda_{0}=1$ since if $\lambda_{0}=0$ the process is rather boring! We get $1+\sum_{k \geq 1} \frac{1}{7 k}$ which is infinite and so the process does not explode.
4.

i) As usual, writing S_{i} for the time spent with i individuals still alive, we have $T=$ $S_{4}+S_{3}+S_{2}+S_{1}$. The random variable S_{i} is exponentially distributed with parameter μ_{i}. It follows that

$$
\begin{aligned}
\mathbb{E}(T) & =\mathbb{E}\left(S_{4}\right)+\mathbb{E}\left(S_{3}\right)+\mathbb{E}\left(S_{2}\right)+\mathbb{E}\left(S_{1}\right) \\
& =\frac{1}{6}+\frac{1}{4}+\frac{1}{2}+\frac{1}{2} \\
& =\frac{17}{12}
\end{aligned}
$$

ii) The S_{i} defined above are independent. Hence,

$$
\begin{aligned}
\operatorname{Var}(T) & =\operatorname{Var}\left(S_{4}\right)+\operatorname{Var}\left(S_{3}\right)+\operatorname{Var}\left(S_{2}\right)+\operatorname{Var}\left(S_{1}\right) \\
& =\frac{1}{6^{2}}+\frac{1}{4^{2}}+\frac{1}{2^{2}}+\frac{1}{2^{2}} \\
& =\frac{85}{144} .
\end{aligned}
$$

5. The first set of equations are the backwards equations for a birth-death process.

$$
\begin{aligned}
p_{i, j}(t+h) & =\sum_{k \geq 0} p_{i, k}(h) p_{k, j}(t) \quad \text { (Chapman-Kolmogorov) } \\
& =\mu_{i} h p_{i-1, j}(t)+\left(1-\mu_{i} h-\lambda_{i} h\right) p_{i, j}(t)+\lambda_{i} h p_{i+1, j}(t)+o(h)
\end{aligned}
$$

This is because all other terms in the sum are $o(h) p_{k, j}(t)$. Dividing by h,

$$
\frac{p_{i, j}(t)-p_{i, j}(t+h)}{h}=\mu_{i} p_{i-1, j}(t)-\left(\mu_{i}+\lambda_{i}\right) p_{i, j}(t)+\lambda_{i} p_{i+1, j}(t)+\frac{o(h)}{h} .
$$

Now, letting h tend to 0 we obtain the desired equation,

$$
p_{i, j}^{\prime}(t)=\mu_{i} p_{i-1, j}(t)-\left(\lambda_{i}+\mu_{i}\right) p_{i, j}(t)+\lambda_{i} p_{i+1, j}(t) .
$$

The forwards equations are derived in a similar way, starting from a different application of the Chapman-Kolmogorov relation. Specifically,

$$
\begin{aligned}
p_{i, j}(t+h) & =\sum_{k \geq 0} p_{i, k}(t) p_{k, j}(h) \quad \text { (Chapman-Kolmogorov) } \\
& =\lambda_{j-1} h p_{i, j-1}(t)+\left(1-\mu_{j} h-\lambda_{j} h\right) p_{i, j}(t)+\mu_{j+1} h p_{i, j+1}(t)+o(h)
\end{aligned}
$$

And so,

$$
\frac{p_{i, j}(t)-p_{i, j}(t+h)}{h}=\lambda_{j-1} p_{i, j-1}(t)-\left(\mu_{j}+\lambda_{j}\right) p_{i, j}(t)+\mu_{j+1} p_{i, j+1}(t)+\frac{o(h)}{h} .
$$

Letting h tend to 0 we obtain,

$$
p_{i, j}^{\prime}(t)=\lambda_{j-1} p_{i, j-1}(t)-\left(\lambda_{j}+\mu_{j}\right) p_{i, j}(t)+\mu_{j+1} p_{i, j+1}(t)
$$

Please let me know if you have any comments or corrections

