
Probability III – 2007/08

Solutions to Exercise Sheet 5

1.

a) We know that if 0 < u < t then X(u) conditioned on X(t) = n has
distribution Bin(n, u

t ). Thus,

P(X(
1
2
) = 2|X(1) = 5) =

(
5
2

)(
1
2

)2 (
1− 1

2

)3

=
5

16

b) We have that Si = Wi−Wi−1 if i > 1, and S1 = W!. It follows that,

Wn = Sn +Sn−1 + · · ·+S1.

By linearity of expectation and the fact that the Si are distributed Exp(1)
we have that,

E(Wn) = E(Sn + · · ·+S1)
= E(Sn)+ · · ·+E(S1)
= n×1
= n

c) The number of particles which exist at time 1 minute is precisely the
number of particles which were emitted in the interval (5

6,1]. We know
that this number has a Po(1

6) distribution. Thus,

P(k particles exist at time 1) = e−
1
6

1
6kk!

.

2. This looks obvious but you do need to be careful that you are justifying
every step using the definition on the Poisson process.
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Firstly,

P(X(u+ t) = j|X(u) = i) =
P(X(u+ t) = j,X(u) = i)

P(X(u) = i)

=
P(X(u+ t)−X(u) = j− i,X(u)−X(0) = i)

P(X(u)−X(0) = i)

=
P(X(u+ t)−X(u) = j− i)P(X(u)−X(0) = i)

P(X(u)−X(0) = i)
= P(X(u+ t)−X(u) = j− i).

Similarly,

P(X(u+ t) = j|X(u) = i,X(u1) = i1)

=
P(X(u+ t) = j,X(u) = i,X(u1) = i1)

P(X(u) = i,X(u1) = i1)

=
P(X(u+ t)−X(u) = j− i,X(u)−X(u1) = i− i1,X(u1)−X(0) = i1)

P(X(u)−X(u1) = i− i1,X(u1)−X(0) = i1)

=
P(X(u+ t)−X(u) = j− i)P(X(u)−X(u1) = i− i1)P(X(u1)−X(0) = i1)

P(X(u)−X(u1) = i− i1)P(X(u1)−X(0) = i1)
= P(X(u+ t)−X(u) = j− i).

Hence, both sides of the given equation are equal.
The second part is exactly the same except the notation becomes more un-
pleasant.

3. As usual with continuous random variables, the cdf is easier to work out
than the pdf.

FW1|X(t)=n(u) = P(W1 ≤ u|X(t) = n)

= 1−P(W1 > u|X(t) = n)
= 1−P(X(u) = 0|X(t = n)

= 1−
(

1− u
t

)n
(since X(u)|X(t) = n is Bin(n,

u
t
))

for 0 < u≤ t.
Differentiating this with respect to u gives the pdf.

fW1|X(t)=n(u) =
n
t

(
1− u

t

)n−1
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for 0 < u≤ t.
I didn’t ask what happened for other values of u, but it is clear that the pdf
is 0 outside this range as W1 certainly lies somewhere in the interval (0, t].
The expectation can be found in the usual way

E(W1|X(t) = n) =
∫ t

0
x

n
t

(
1− x

t

)n−1
dx

=
[
−x

(
1− x

t

)n]x=t

x=0
+

∫ t

0

(
1− x

t

)n
dx (integrating by parts)

= 0−
[

t
n+1

(
1− x

t

)n+1
]x=t

t=0

=
t

n+1
.

4. These are most easily done by considering random variables Ui for 1 ≤
i ≤ n. Where the Ui are independent and each is distributed uniformly on
[0,3]. We know from lectures that if R is a symmetric function of the Wi (as
all the functions given are) then

E(R(W1, . . . ,W5)|X(3) = 5) = E(R(U1, . . . ,U5)).

i)

E(W1 +W2 +W3 +W4 +W5|X(3) = 5) = E(U1 +U2 +U3 +U4 +U5)

= 5× 3
2

=
15
2

.

ii)

E(W1W2W3W4W5|X(3) = 5) = E(U1U2U3U4U5)

= E(U1)E(U2)E(U3)E(U4)E(U5) (since the Ui are independent) =
(

3
2

)5
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iii)

E

(
∑
i6= j

WiW j|X(3) = 5

)
= E

(
∑
i6= j

UiU j

)

= 20E(U1U2) (since there are 20 equal terms in the sum)

= 20
(

3
2

)2

(since the Ui are independent) = 45.

5. Let X(t) be the number of faults in the first t miles of cable. Let C be
the total cost of repairing all faults in the first M miles of cable. We first
condition on X(M) to get

E(C) = ∑
n≥0
E(C|X(M) = n)P(X(M) = n).

Now, writing Wi for the position of the ith fault (that is the ith waiting time),
we have that

E(C|X(M) = n) =
n

∑
i=1

(W k
1 +W k

2 + · · ·+W k
n ).

We can use the same trick as for question 4 to get,

E(C|X(M) = n) =
n

∑
i=1

(Uk
1 +Uk

2 + · · ·+Uk
n ),

where the Ui are independent random variables, each uniformly distributed
on [0,M]. Thus,

E(C|X(M) = n) = n
∫ M

0

xk

M
dx =

nMk

k +1
.

Putting this into the first equation we have that,

E(C) = ∑
n≥0

nMk

k +1
P(X(M) = n) =

Mk

k +1 ∑
n≥0

ne−Mλ (Mλ)n

n!
=

Mk

k +1
× (Mλ)

The last equality follows because the sum is the expectation of a Po(Mλ)
random variable. We conclude that

E(C) =
Mk+1λ
k +1

.

Please let me know if you have any comments or corrections
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