Probability III – 2007/08

Please hand in solutions by 12:00, November 29

Exercise Sheet 5

1. Radioactive particles are emitted from a source according to a Poisson process of intensity 1 per minute.

- a) Suppose that 5 particles are emitted in the first minute. What is the probability that exactly 2 of them were emitted in the first 30 seconds.
- b) Let W_n be the time of emission of the *n*th particle. Express W_n in terms of the sojourn times of the process and hence find $\mathbb{E}(W_n)$.
- c) Suppose that each particle survives for 10 seconds. What is the probability that k particles exists at time 1 minute.
- 2. Prove that if X(t) is a Poisson process then

$$\mathbb{P}(X(u+t) = j | X(u) = i, X(u_1) = i_1) = \mathbb{P}(X(u+t) = j | X(u) = i),$$

for all $0 < u_1 < u, t > 0, i_1 \le i \le j$.

Thus the Poisson process satisfies a form of Markov property. If you're feeling keen you could try to prove the stronger statement.

$$\mathbb{P}(X(u+t) = j | X(u) = i, X(u_1) = i_1, \dots, X(u_k) = i_k) = \mathbb{P}(X(u+t) = j | X(u) = i),$$

for all $0 < u_k < \cdots < u_1 < u, t > 0, i_k \le \cdots \le i_1 \le i \le j$.

3. Show that the probability density function of W_1 conditioned on X(t) = n for n > 0 is

$$f_{W_1|X(t)=n}(u) = \frac{n}{t} \left(1 - \frac{u}{t}\right)^{n-1}$$

for $0 < u \le t$. What is $\mathbb{E}(W_1 | X(t) = n)$?

4. Let X(t) be a Poisson process of rate 2. Let $W_1, W_2, ...$ be the waiting times of the process. Calculate the following:

- i) $\mathbb{E}(W_1 + W_2 + W_3 + W_4 + W_5 | X(3) = 5)$
- ii) $\mathbb{E}(W_1 W_2 W_3 W_4 W_5 | X(3) = 5)$
- iii) $\mathbb{E}(\sum_{i \neq j} W_i W_j | X(3) = 5)$

5. A long cable has faults on it which form a Poisson process of intensity λ per mile. The cost of repairing a fault at position *u* on the cable is $\pounds u^k$ for some constant *k*. What is the expected cost of repairing all faults in the first *M* miles of cable?