Probability III - 2007/08

Solutions to Exercise Sheet 3

1. Let X_{n} denote the number of red balls in the urn after n time steps. The process follows the Markov chain on state space $S=\{0,1,2,3,4,5\}$, with $X_{0}=5$ and transition probabilities

$$
p_{i j}= \begin{cases}\frac{3}{3+i} & \text { if } j=i \\ \frac{i}{3+i} & \text { if } j=i-1 \\ 0 & \text { otherwise }\end{cases}
$$

(Try drawing the transition graph if you can't see what's going on.)
State 0 is the only absorbing state and the chain is finite so eventually it must be absorbed. Now let

$$
w_{i}=\mathbb{E}\left(\text { time to absorbtion } \mid X_{0}=i\right) .
$$

By the method of first step analysis:

$$
\begin{aligned}
& w_{1}=1+\frac{3}{4} w_{1} \\
& w_{2}=1+\frac{2}{5} w_{1}+\frac{3}{5} w_{2} \\
& w_{3}=1+\frac{1}{2} w_{2}+\frac{1}{2} w_{3} \\
& w_{4}=1+\frac{4}{7} w_{3}+\frac{3}{7} w_{4} \\
& w_{5}=1+\frac{5}{8} w_{4}+\frac{3}{8} w_{5} .
\end{aligned}
$$

The first equation gives that $w_{1}=4$. This can be substituted into the second equation to find w_{2}, which can be substitued into the third equation and so on. The result is

$$
\begin{aligned}
& w_{1}=4 \\
& w_{2}=\frac{13}{2} \\
& w_{3}=1+\frac{17}{2} \\
& w_{4}=\frac{41}{4} \\
& w_{5}=\frac{237}{20}
\end{aligned}
$$

So the expected duration of the process is $\frac{237}{20}$ time steps.
2.
a) Every state can be reached from every other in a finite number of steps. Also, $p_{11}=$ $1 / 10>0$ and so (by the sufficient condition for regularity given in lectures) the chain is regular.

To find the equilibrium distribution we need to solve:

$$
\left(\begin{array}{llll}
w_{1} & w_{2} & w_{3} & w_{4}
\end{array}\right)\left(\begin{array}{cccc}
1 / 10 & 1 / 2 & 0 & 2 / 5 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{llll}
w_{1} & w_{2} & w_{3} & w_{4}
\end{array}\right) .
$$

These have solution

$$
\left(\begin{array}{llll}
w_{1} & w_{2} & w_{3} & w_{4}
\end{array}\right)=\left(\begin{array}{llll}
10 / 29 & 5 / 29 & 5 / 29 & 9 / 29
\end{array}\right) .
$$

We deduce that in the long run the proportion of time spent in state i will be close to w_{i}, for these values of w_{i}.
b) There was a mistake in the original version of the sheet. Hopefully everyone got the corrected version.

You can check for any $i, j \in S$ there is a positive probability of going from i to j in 6 steps. To do this either calculate P^{6} and notice that all entries are positive, or look for paths of length 6 between every pair of states in the transition graph. This means that the chain is regular.

To find the equilibrium distribution we need to solve:

$$
\left(\begin{array}{llll}
w_{1} & w_{2} & w_{3} & w_{4}
\end{array}\right)\left(\begin{array}{cccc}
0 & 1 / 3 & 0 & 2 / 3 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{llll}
w_{1} & w_{2} & w_{3} & w_{4}
\end{array}\right) .
$$

These have solution

$$
\left(\begin{array}{llll}
w_{1} & w_{2} & w_{3} & w_{4}
\end{array}\right)=\left(\begin{array}{llll}
3 / 7 & 1 / 7 & 1 / 7 & 2 / 7
\end{array}\right) .
$$

We deduce that in the long run the proportion of time spent in state i will be close to w_{i}, for these values of w_{i}.
3.
a) The chain is irreducible but not regular (since $p_{11}^{(k)}=0$ if k is odd, and $p_{12}^{(k)}=0$ if k is even). The method used in the previous question shows that there is a unique equilibrium distribution,

$$
\left(\begin{array}{ll}
w_{1} & w_{2}
\end{array}\right)=\left(\begin{array}{ll}
1 / 2 & 1 / 2
\end{array}\right) .
$$

b) The chain is irreducible but not regular (since $p_{11}^{(k)}=0$ if k is odd, and $p_{12}^{(k)}=0$ if k is even). The method used in the previous question shows that there is a unique equilibrium distribution,

$$
\left(\begin{array}{lll}
w_{1} & w_{2} & w_{3}
\end{array}\right)=\left(\begin{array}{lll}
1 / 2 & 1 / 8 & 3 / 8
\end{array}\right) .
$$

c) The chain is not irreducible as there is no way of going from state 2 to state 1 , for example. You could have said that the absorbing states form single element equivalence classes. Solving the equation

$$
\left(\begin{array}{lll}
w_{1} & w_{2} & w_{3}
\end{array}\right)\left(\begin{array}{ccc}
1 / 3 & 1 / 3 & 1 / 3 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
w_{1} & w_{2} & w_{3}
\end{array}\right)
$$

gives that for any $1 \leq \alpha \leq 1$, the vector

$$
\left(\begin{array}{lll}
0 & \alpha & 1-\alpha
\end{array}\right)
$$

is an equilibrium distribution. So an equilibrium distribution does exist but it is not unique.
4. We know that the graph is finite so let $S=\{1,2, \ldots, n\}$ be the vertex set of the graph (and hence also the state space of the chain). We will write $\operatorname{deg}(i)$ for the degree of vertex i. The chain has transition probabilities

$$
p_{i j}= \begin{cases}\frac{1}{\operatorname{deg}(i)} & \text { if }(i j) \text { is an edge of the graph } \\ 0 & \text { if }(i j) \text { is not an edge of the graph }\end{cases}
$$

I claim that setting $w_{i}=\operatorname{deg}(i)$ solves the equation

$$
\mathbf{w} P=\mathbf{w} .
$$

To see this note that the k th component of the left hand side is

$$
\sum_{i=1}^{n} \operatorname{deg}(i) p_{i k}
$$

The summand is 0 if $(i k)$ is not an edge and 1 if $i k$ is an edge (since in that case $p_{i k}=\frac{1}{\operatorname{deg}(i)}$). Since there are $\operatorname{deg}(k)$ values of i for which $(i k)$ is an edge, we deduce that this sum is $\operatorname{deg}(k)$. That is

$$
\sum_{i=1}^{n} \operatorname{deg}(i) p_{i k}=\operatorname{deg}(k)
$$

and so this \mathbf{w} does indeed solve the equation. It remains to normalise \mathbf{w} so that we have a probability vector. We can do this be dividing every component by $D=\sum_{i=1}^{n} \operatorname{deg}(i)$ (you may have noticed that D is twice the number of edges of the graph). The equilibrium distribution is therefore

$$
\mathbf{w}=\left(\begin{array}{llll}
\frac{\operatorname{deg}(1)}{D} & \frac{\operatorname{deg}(2)}{D} & \ldots & \frac{\operatorname{deg}(n)}{D}
\end{array}\right)
$$

Please let me know if you have any comments or corrections

