Probability III - 2007/08

Solutions to Exercise Sheet 2

1. The transition graph is drawn below:
i,ii) From the transition graph, we can read off the probabilities:

$$
\begin{aligned}
& \mathbb{P}\left(X_{1}=2 \mid X_{0}=1\right)=\frac{1}{2} \\
& \mathbb{P}\left(X_{2}=3 \mid X_{1}=2\right)=\frac{1}{3} .
\end{aligned}
$$

iii) By the Markov property,

$$
\mathbb{P}\left(X_{2}=3 \mid X_{1}=2, X_{0}=1\right)=\mathbb{P}\left(X_{2}=3 \mid X_{1}=2\right)=\frac{1}{3}
$$

iv)

$$
\begin{aligned}
\mathbb{P}\left(X_{2}=3, X_{1}=2 \mid X_{0}=1\right) & =\mathbb{P}\left(X_{2}=3 \mid X_{1}=2, X_{0}=1\right) \times \mathbb{P}\left(X_{1}=2 \mid X_{0}=1\right) \\
& =\frac{1}{3} \times \frac{1}{2} \\
& =\frac{1}{6}
\end{aligned}
$$

2. Let state 1 denote a wet day and state 2 denote a dry day. The transition matrix for the chain is then given by

$$
P=\left(\begin{array}{ll}
3 / 4 & 1 / 4 \\
1 / 2 & 1 / 2
\end{array}\right)
$$

The 3-step transition matrix is

$$
P^{3}=\left(\begin{array}{ll}
43 / 64 & 21 / 64 \\
21 / 32 & 11 / 32
\end{array}\right)
$$

i) From the matrix we see that

$$
\mathbb{P}(17 \text { October is dry } \mid 14 \text { October is dry })=\frac{11}{32} .
$$

ii) Again, from the matrix,

$$
\mathbb{P}(17 \text { October is wet } \mid 14 \text { October is wet })=\frac{43}{64} .
$$

iii)
$\mathbb{P}(17$ and 18 October are both wet $\mid 14$ October is wet $)=\mathbb{P}(17$ October is wet $\mid 14$ October is wet $)$ $\times \mathbb{P}(18$ October is wet $\mid 17$ October is wet $)$

$$
=\frac{43}{64} \times \frac{3}{4}
$$

$$
=\frac{129}{256}
$$

(compare part iv) of question 1.)
3. This question was possibly rather confusingly phrased. Perhaps it would have been clearer to say "draw the transition matrix for a Markov chain which models this process", as the process as described is strictly speaking not defined for all $t \in\{0,1,2, \ldots\}$.
We must somehow model the fact that the process can end and the most obvious way to do this is to introduce a 6th state called "End" which is absorbing. Doing this we obtain transition graph
and transition matrix

$$
\left(\begin{array}{cccccc}
0 & 1 / 2 & 0 & 0 & 1 / 3 & 1 / 6 \\
1 / 3 & 0 & 1 / 2 & 0 & 0 & 1 / 6 \\
0 & 1 / 3 & 0 & 1 / 2 & 0 & 1 / 6 \\
0 & 0 & 1 / 3 & 0 & 1 / 2 & 1 / 6 \\
1 / 2 & 0 & 0 & 1 / 3 & 0 & 1 / 6 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

Clearly, to return to the start after two throws the first two steps must be "clockwise" then "anti-clockwise" or "anti-clockwise" then "clockwise". Thus,

$$
\mathbb{P}(\text { return to start after } 2 \text { throws })=\frac{1}{2} \times \frac{1}{3}+\frac{1}{3} \times \frac{1}{2}=\frac{1}{3} .
$$

The process lasts for exactly seven throws means that the first six throws are all not 6 and the seventh is a 6 . So,

$$
\mathbb{P}(\text { lasts } 7 \text { throws })=\frac{5^{6}}{6^{7}} \approx 0.0558
$$

4. The absorbing states are 0 and 3 (because $p_{00}=p_{33}=1$).

Let u_{i} be the probability that the process is absorbed at state 0 given that it starts at state i. Writing A for the time of absorbtion this means

$$
u_{i}=\mathbb{P}\left(X_{A}=0 \mid X_{0}=i\right) .
$$

Using first step analysis (that is to say conditioning on X_{1}) we obtain the equations

$$
\begin{aligned}
& u_{1}=\frac{1}{4}+\frac{1}{4} u_{1}+\frac{1}{4} u_{2} \\
& u_{2}=\frac{1}{6}+\frac{1}{6} u_{1}+\frac{1}{6} u_{2}
\end{aligned}
$$

These are easily solved to give $u_{1}=\frac{3}{7}$. I didn't ask for u_{2} but you could also have found that $u_{2}=\frac{2}{7}$.
5. This question was also best tackled using first step analysis.
i) Let w_{i} be the expected time to absorbtion starting from state i. Writing A for the absorbtion time,

$$
w_{i}=\mathbb{E}\left(A \mid X_{0}=i\right) .
$$

Using first step analysis (see lecture notes) we obtain the equations

$$
\begin{aligned}
& w_{0}=1+\frac{1}{7} w_{1} \\
& w_{1}=1+\frac{1}{4} w_{0}+\frac{1}{2} w_{1} .
\end{aligned}
$$

These are easily solved to give $w_{1}=\frac{35}{13}$.
ii) Let v_{i} be the expected number of visits to state 0 before absorbtion starting from state i. Writing A for the absorbtion time. We now use the general method described in lectures taking state 0 to have weight 1 and all others to have weight 0 . We obtain the equations

$$
\begin{aligned}
& v_{0}=1+\frac{1}{7} v_{1} \\
& v_{1}=\frac{1}{4} v_{0}+\frac{1}{2} v_{1} .
\end{aligned}
$$

These are easily solved to give $v_{1}=\frac{7}{13}$.
iii) Let g_{i} be your expected gain up to absorbtion starting from state i. Using the same method but this time with weight -5 for state 0 and weight 10 for state 1 we obtain

$$
\begin{aligned}
& g_{0}=-5+\frac{1}{7} g_{1} \\
& g_{1}=10+\frac{1}{4} g_{0}+\frac{1}{2} g_{1}
\end{aligned}
$$

These are easily solved to give $g_{1}=\frac{245}{13}$.
You could also have done this by noting that

$$
\text { Gain }=-5 \times(\text { number of visits to } 0)+10 \times(\text { numberof visits to } 1) .
$$

Now using liearity of expectation,

$$
g_{i}=-5 v_{i}+10 \mathbb{E}(\text { number of visits to } 1)
$$

Which can be found using part ii) and a similar calculation for state 1 .

Please let me know if you have any comments or corrections

