Probability III - 2007/08

Solutions to Exercise Sheet 1

1. a) We have that

$$
\begin{aligned}
\mathbb{P}(X+Y=k) & =\sum_{i=0}^{k} \mathbb{P}(X=i, Y=k-i) \\
& =\sum_{i=1}^{k} \mathbb{P}(X=i) \mathbb{P}(Y=k-i) \quad \text { (by independence) } \\
& =\sum_{i=0}^{k}\binom{n}{i} p^{i}(1-p)^{n-i}\binom{n}{k-i} p^{k-i}(1-p)^{n-k+i} \\
& =p^{k}(1-p)^{2 n-k} \sum_{i=0}^{k}\binom{n}{i}\binom{n}{k-i} \\
& =p^{k}(1-p)^{2 n-k}\binom{2 n}{k} \quad \text { (by standard properties of binomial numbers). }
\end{aligned}
$$

This is just the probability mass function of a $\operatorname{Bin}(2 n, p)$ random variable.
b) As for part a) we have that

$$
\begin{aligned}
\mathbb{P}(X+Y=k) & =\sum_{i=0}^{k} \mathbb{P}(X=i) \mathbb{P}(Y=k-i) \\
& =\sum_{i=0}^{k} e^{\lambda} \frac{\lambda^{i}}{i!} e^{\lambda} \frac{\lambda^{k-i}}{k-i!} \\
& =\frac{e^{-2 \lambda} \lambda^{k}}{k!} \sum_{i=0}^{k} \frac{k!}{(k-i)!i!} \\
& =\frac{e^{-2 \lambda} \lambda^{k}}{k!} \sum_{i=0}^{k}\binom{k}{i} \\
& =\frac{e^{-2 \lambda} \lambda^{k}}{k!} 2^{k} \quad \text { (since the sum is the number of subsets of a } k \text {-set) } \\
& =\frac{e^{-2 \lambda}(2 \lambda)^{k}}{k!}
\end{aligned}
$$

This is just the probability mass function of a $\mathrm{Po}(2 \lambda)$ random variable.
c) We have that

$$
\begin{aligned}
\mathbb{P}(X=k \mid X+Y=n) & =\frac{\mathbb{P}(X=k, X+Y=n)}{\mathbb{P}(X+Y=n)} \quad \text { (definition of conditional probability) } \\
& =\frac{\mathbb{P}(X=k, Y=n-k)}{\mathbb{P}(X+Y=n)} \\
& =\frac{\mathbb{P}(X=k) \mathbb{P}(Y=n-k)}{\mathbb{P}(X+Y=n)} \quad \text { (independence) } \\
& =\frac{e^{-\lambda \frac{\lambda^{k}}{k!} e^{-\lambda} \frac{\lambda^{n-k}}{(n-k)!}}}{e^{-2 \lambda \frac{(2 \lambda)^{n}}{n!}} \quad \text { (by part b) above) }} \\
& =\binom{n}{k} \frac{1}{2^{n}}
\end{aligned}
$$

This is just the probability mass function of a $\operatorname{Bin}\left(n, \frac{1}{2}\right)$ random variable.
2. a) Since X takes positive integer values,

$$
\mathbb{P}(X \geq k)=\mathbb{P}(X=k)+\mathbb{P}(X=k+1)+\mathbb{P}(X=k+2)+\ldots
$$

Thus,

$$
\begin{aligned}
\sum_{k \geq 1} \mathbb{P}(X \geq k) & =(\mathbb{P}(X=1)+\mathbb{P}(X=2)+\mathbb{P}(X=3)+\ldots) \\
& +(\mathbb{P}(X=2)+\mathbb{P}(X=3)+\mathbb{P}(X=4)+\ldots) \\
& +(\mathbb{P}(X=3)+\mathbb{P}(X=4)+\mathbb{P}(X=5)+\ldots) \\
& +\ldots \\
& =\sum_{k \geq 1} k \mathbb{P}(X=k) \\
& =\mathbb{E}(X) .
\end{aligned}
$$

b) The event $(N=n)$ happens precisely when the first $n-1$ tosses are all tails and the next one is a head. Thus,

$$
\mathbb{P}(N=n)=\left(\frac{1}{2}\right)^{n-1} \frac{1}{2}=\left(\frac{1}{2}\right)^{n}
$$

This is the geometric distribution with parameter $\frac{1}{2}$.
To find the expectation observe that the event $(N \geq k)$ happens precisely when the first $k-1$ tosses are all tails. Thus,

$$
\mathbb{P}(N \geq k)=\left(\frac{1}{2}\right)^{k-1}
$$

Using part a) we obtain that

$$
\begin{aligned}
\mathbb{E}(N) & =\sum_{k \geq 1}\left(\frac{1}{2}\right)^{k-1} \\
& =2 \quad \text { (sum of a geometric progression) }
\end{aligned}
$$

3. Let X be the number of heads observed. Conditioning on N we obtain

$$
\begin{aligned}
\mathbb{P}(X=k) & =\sum_{n \geq k} \mathbb{P}(X=k \mid N=n) \mathbb{P}(N=n) \\
& =\sum_{n \geq k}\binom{n}{k} p^{k}(1-p)^{n-k} e^{-\lambda} \frac{\lambda^{n}}{n!}=\frac{e^{-\lambda} p^{k} \lambda^{k}}{k!} \sum_{n \geq k} \frac{(1-p)^{n-k} \lambda^{n-k}}{(n-k)!} \\
& =\frac{e^{-\lambda}(p \lambda)^{k}}{k!} e^{(1-p) \lambda}=\frac{e^{-p \lambda}(p \lambda)^{k}}{k!} .
\end{aligned}
$$

Hence X is distributed $\operatorname{Po}(p \lambda)$.
4. Solution 1. If ξ_{j} is the random number chosen at j-th selection, then $X=\xi_{1}+\cdots+\xi_{k}$. But then

$$
\begin{aligned}
\mathbb{P}\left(\xi_{j}=i\right) & =\mathbb{P}\left(\xi_{1} \neq i, \ldots, \xi_{j-1} \neq i, \xi_{j}=i\right) \quad(\text { since } \mathbb{P}(A B)=\mathbb{P}(A) \mathbb{P}(B \mid A)) \\
& =\mathbb{P}\left(\xi_{1} \neq i, \ldots, \xi_{j-1} \neq i\right) \mathbb{P}\left(\xi_{j}=i \mid \xi_{1} \neq i, \ldots, \xi_{j-1} \neq i\right)=\frac{\binom{n-1}{j-1}}{\binom{n}{j-1}} \frac{1}{n-j+1}=\frac{1}{n} .
\end{aligned}
$$

Hence,

$$
\mathbb{E}\left(\xi_{j}\right)=\frac{1}{n}(1+2+3+\cdots+n)=\frac{n+1}{2} \quad \text { (sum of an arithmetic progression) }
$$

and

$$
\mathbb{E}(X)=\mathbb{E}\left(\xi_{1}\right)+\cdots+\mathbb{E}\left(\xi_{k}\right)=\frac{k(n+1)}{2}
$$

Solution 2. Let A_{i} be the event "the i th ball is chosen". Using indicator functions we see that

$$
X=\mathbb{1}\left(A_{1}\right)+2 \mathbb{1}\left(A_{2}\right)+3 \mathbb{1}\left(A_{3}\right)+\cdots+n \mathbb{1}\left(A_{n}\right)
$$

Now by the linearity of expectation

$$
\mathbb{E}(X)=\mathbb{E}\left(\mathbb{1}\left(A_{1}\right)\right)+2 \mathbb{E}\left(\mathbb{1}\left(A_{2}\right)\right)+3 \mathbb{E}\left(\mathbb{1}\left(A_{3}\right)\right)+\cdots+n \mathbb{E}\left(\mathbb{1}\left(A_{n}\right)\right) .
$$

It is clear that for any event $S, \mathbb{E}(\mathbb{1}(S))=\mathbb{P}(S)$. Also, for any i,

$$
\mathbb{P}\left(A_{i}\right)=\frac{\binom{n-1}{k-1}}{\binom{n}{k}}=\frac{k}{n} .
$$

Thus,

$$
\mathbb{E}(X)=\frac{k}{n}(1+2+3+\cdots+n)=\frac{k(n+1)}{2} \quad \text { (sum of an arithmetic progression). }
$$

5. Let's work out the transition probabilities for all pairs of states. It is clear that

$$
\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right)=0 \quad \text { if } i>j .
$$

If $X_{n}=i$ then $X_{n+1}=i$ if and only if throw number $(n+1)$ is no more than i. Thus,

$$
\mathbb{P}\left(X_{n+1}=i \mid X_{n}=i\right)=\frac{i}{6}
$$

If $i<j$, and $X_{n}=i$ then $X_{n+1}=j$ if and only if throw number $(n+1)$ is a j. Thus,

$$
\mathbb{P}\left(X_{n+1}=j \mid X_{n}=i\right)=\frac{1}{6} \quad \text { if } i<j
$$

Since these transition probabilities do not depend on X_{n-1}, X_{n-2}, \ldots we deduce that X_{n} is a Markov chain. The transition graph is drawn below

If throw number $(n+1)$ is not a 6 then he number of 6 s seen on the first $(n+1)$ rolls is the number of sixes seen in the first n rolls. If throw number $(n+1)$ is a 6 then it increases by 1. Thus

$$
\mathbb{P}\left(S_{n+1}=j \mid S_{n}=i\right)= \begin{cases}\frac{5}{6} & \text { if } i=j \\ \frac{1}{6} & \text { if } j=i+1 \\ 0 & \text { otherwise }\end{cases}
$$

Again, these transition probabilities do not depend on S_{n-1}, S_{n-2}, \ldots. We deduce that X_{n} is a Markov chain. The transition graph is drawn below

Finally, T_{n} is not a Markov chain. To show this we must show that the Markov condition is violated. Suppose that $T_{1}=1, T_{2}=1$; in this case the first throw must have been a 6 and the second throw must have been something else. Thus T_{3} is at most 1 . It follows that

$$
\mathbb{P}\left(T_{3}=2 \mid T_{2}=1, T_{1}=1\right)=0 .
$$

Suppose that $T_{1}=0, T_{2}=1$; in this case the first throw must have been something other than a 6 and the second throw must have been a 6 . Thus, if the third throw is a 6 then $T_{3}=2$. It follows that,

$$
\mathbb{P}\left(T_{3}=2 \mid T_{2}=1, T_{1}=0\right)=\frac{1}{6} .
$$

We deduce that $\mathbb{P}\left(T_{3}=2 \mid T_{2}=1\right)$ does depend on T_{1} and hence the Markov property does not hold.

Please let me know if you have any comments or corrections

