Probability III - 2007/08

Exercise Sheet 1

Write your name and student number at the top of your assignment before handing it in. Staple all pages together. Return the assignment to me by 11:00 on Tuesday, 9 October

- 1. Let *X* and *Y* be independent random variables. Show that:
 - a) if X and Y both have distribution Bin(n, p) then X + Y has distribution Bin(2n, p),
 - b) if X and Y both have distribution $Po(\lambda)$ then X + Y has distribution $Po(2\lambda)$,
 - c) if *X* and *Y* both have distribution $Po(\lambda)$ then the conditional distribution of *X* given than X + Y = n is $Bin(n, \frac{1}{2})$.

2.

a) Show that if *X* is a random variable taking positive integer values then

$$\mathbb{E}(X) = \sum_{k \ge 1} \mathbb{P}(X \ge k).$$

- b) A fair coin is tossed repeatedly. Let *N* be the number of the toss at which the first head appears. Determine the distribution of *N* and its expectation.
- 3. Let N be a Poisson random variable with parameter λ . A coin which has a probability p of showing heads is tossed N times. What is the distribution of the number of heads observed?
- 4. An urn contains n balls labeled 1, 2, ..., n. We select k balls at random (without replacement) and add up the numbers on them obtaining a value X. Show that

$$\mathbb{E}(X) = \frac{k(n+1)}{2}.$$

(Hint: Let ξ_j be the random number chosen at *j*-th selection. Write *X* in terms of the random variables ξ_j .)

- 5. A standard die is rolled repeatedly. Let
 - X_n be the largest value seen in the first n rolls,
 - S_n be the number of 6s seen in the first n rolls,
 - T_n be the number of 6s seen on rolls n-1 and n.

(so
$$T_n = S_n - S_{n-2}$$
).

Which of X_n , S_n , T_n are Markov chains?

For those that are draw their transition graphs.