Probability III - 2007/08

Exercise Sheet 1

Write your name and student number at the top of your assignment before handing it in. Staple all pages together. Return the assignment to me by 11:00 on Tuesday, 9 October

1. Let X and Y be independent random variables. Show that:
a) if X and Y both have distribution $\operatorname{Bin}(n, p)$ then $X+Y$ has distribution $\operatorname{Bin}(2 n, p)$,
b) if X and Y both have distribution $\operatorname{Po}(\lambda)$ then $X+Y$ has distribution $\operatorname{Po}(2 \lambda)$,
c) if X and Y both have distribution $\operatorname{Po}(\lambda)$ then the conditional distribution of X given than $X+Y=n$ is $\operatorname{Bin}\left(n, \frac{1}{2}\right)$.
2.

a) Show that if X is a random variable taking positive integer values then

$$
\mathbb{E}(X)=\sum_{k \geq 1} \mathbb{P}(X \geq k)
$$

b) A fair coin is tossed repeatedly. Let N be the number of the toss at which the first head appears. Determine the distribution of N and its expectation.
3. Let N be a Poisson random variable with parameter λ. A coin which has a probability p of showing heads is tossed N times. What is the distribution of the number of heads observed?
4. An urn contains n balls labeled $1,2, \ldots, n$. We select k balls at random (without replacement) and add up the numbers on them obtaining a value X. Show that

$$
\mathbb{E}(X)=\frac{k(n+1)}{2} .
$$

(Hint: Let ξ_{j} be the random number chosen at j-th selection. Write X in terms of the random variables ξ_{j}.)
5. A standard die is rolled repeatedly. Let

- X_{n} be the largest value seen in the first n rolls,
- S_{n} be the number of 6 s seen in the first n rolls,
- T_{n} be the number of 6 s seen on rolls $n-1$ and n.
(so $T_{n}=S_{n}-S_{n-2}$).
Which of X_{n}, S_{n}, T_{n} are Markov chains?
For those that are draw their transition graphs.

