MAS338 Probability III

The purpose of this list of questions is to help you to prepare for the exam by revising the material of the course in a systematic way. Apart of the ability to provide answers to these questions you are supposed to be able to solve problems similar to those considered in courseworks.

- 1. The notion of a Markov Chain (MC).
 - (a) What is the definition of a Markov Chain?
 - (b) What is a transition matrix of a Markov Chain?
 - (c) Let X_n be a Markov Chain with a state space $S = \{1, ..., m\}$ and a transition matrix $\mathbb{P} = (p_{ij})$. Prove that

$$P\{X_n = i_n, X_{n-1} = i_{n-1}, \dots, X_1 = i_1 \mid X_0 = i_0\} = p_{i_0 i_1} p_{i_1 i_2} \dots p_{i_{n-1} i_n}.$$

- (d) Suppose that the initial distribution of a Markov Chain with a state space S is given: $P\{X_0 = i\} = \pi_i$, where $i \in S$. Express the probability $P\{X_2 = k\}$ in terms of p_{ij} , $i, j \in S$, and π_i .
- (e) Prove the following theorem:

Theorem. If X_n is a Markov Chain with a state space $S = \{1, ..., m\}$ and a transition matrix $\mathbb{P} = (p_{ij})$, then $P\{X_n = j \mid X_0 = i\} = p_{ij}^{(n)}$, where $p_{ij}^{(n)}$ is the (i, j)-element of the matrix \mathbb{P}^n .

- 2. First step analysis.
 - (a) Define what is an absorbing state of a Markov Chain.
 - (b) Consider a Markov Chain with a state space $S = \{0, 1, 2\}$ and a transition matrix

$$P = \left(\begin{array}{ccc} 1 & 0 & 0 \\ \alpha & \beta & \gamma \\ 0 & 0 & 1 \end{array}\right).$$

- (a) Explain why 0 and 2 are absorbing states of this chain.
- (b) Let T be the time at which the chain is absorbed: $T = \min\{n : X_n = 0 \text{ or } X_n = 2 \mid X_0 = 1\}$. Put $u = P\{X_T = 0 \mid X_0 = 1\}$ the probability that the chain is absorbed by the state 0. Using the first step analysis derive the equation satisfied by u and hence find u.

How would the answer change if you are asked to find $\tilde{u} = P\{X_T = 2 \mid X_0 = 1\}$?

(c) Let T be as above. Put $v = E\{T \mid X_0 = 1\}$ – the (conditional) expectation of the absorbtion time. Using the first step analysis derive the equation satisfied by v and hence find v.

3. Consider a Markov Chain with a state space $S = \{1, 2, 3, 4\}$ and transition matrix

$$P\left(\begin{array}{cccc} 1 & 0 & 0 & 0\\ 0.3 & 0.2 & 0.1 & 0.4\\ 0 & 0.3 & 0.4 & 0.3\\ 0 & 0 & 0 & 1 \end{array}\right).$$

State questions analogous to the ones asked in the previous problem and answer them.

- 4. Consider a Markov Chain with a state space $S = \{1, 2, 3, 4\}$ and transition matrix given above. Denote by a_i , i = 2, 3, the probability of the event that a MC starting from i will eventually be absorbed by one of the absorbing states. Use the first step analysis to derive equations for these probabilities and prove that $a_i = 1$.
- 5. Consider a Markov Chain with a state space $S = \{1, 2, 3, 4\}$ and transition matrix given above. Let u_i be the probability that a MC starting from i is absorbed by the state 4. Find these probabilities.
- 6. Consider a Markov Chain with a state space $S = \{1, 2, 3, 4\}$ and transition matrix given above. Let $v_i = E\{T \mid X_0 = i\}$ be the mean time of absorbtion given that the MC starts from i. Find these expectations.
- 7. Consider a Markov Chain with a state space $S = \{1, ..., m\}$ and transition matrix $\mathbb{P} = (p_{ij})$. Suppose that this chain has absorbing states and let T be the time at which the chain is absorbed by one of these states. Next, let f(i) be a function defined on S. Put

$$w_i = E(\sum_{j=0}^{T} f(X_j) | X_0 = i).$$

Prove that

$$w_i = f(i)$$
 if i is absorbing

$$w_i = f(i) + \sum_{j=1}^m p_{ij}w_j$$
 if i is not absorbing.

How should one choose the function f in order to obtain equations for u_i ? For v_i ?

8. A gambler is playing the following game. A fair 6-sided die is rolled repeatedly until the sum of two consecutive throws is 3 for the first time. If 6 is rolled then the gambler is paid £1; if 2 is rolled then the gambler pays £1. The gambler neither receives nor pays any money if anything else is rolled. However, he does not pay anything if 2 is rolled at the very end of the game.

Consider a Markov chain X_n with the state space $S = \{0, 6, 1, 2, 12, 21\}$, where 0 denotes the beginning of the game (that is $X_0 = 0$) and it reappears every time when

none of the numbers 1, 2, 6 shows up. The other states have a natural meaning: 6, 1, and 2 are the values of X_n whenever they appear strictly before the end of the game, whereas 12 and 21 denote the end of the game.

- (a) Write down the transition matrix for this Markov chain.
- (b) What is the expected number of rolls in this game?
- (c) Obtain the mean value of the gain in this game and decide whether this game is fair.
- (d) If it turns out that this game is not fair, what should be the amount $\pounds z$ paid for rolling a 6 to ensure that the modified game is fair. (No other payment is changed.)
- 9. Define what is an equilibrium distribution of a Markov Chain X_t with a transition matrix $\mathbb{P} = (p_{ij}), 1 \leq i, j \leq m$.

Suppose that the initial distribution of the MC X_t is π , where $\pi = (\pi_1, ..., \pi_m)$ is an equilibrium distribution of this MC. What is then the probability $P\{X_5 = i\}$? What is the probability $P\{X_5 = i, X_6 = j\}$?

10. Give the definition of an irreducible MC. What is a regular MC? Is a regular chain irreducible? Is an irreducible chain regular? (Wherever the answer is NO, give an example illustrating this answer.)

Suppose that the state space of a MC is finite. State a theorem providing a sufficient condition for existence of a unique equilibrium distribution of such a chain.

11. Consider a MC with an infinite state space $S = \{0, 1, 2, ...\}$. Suppose that the transition probabilities of this MC are given by

$$p_{i,0} = q$$
, $p_{i,i+1} = p$, where $p > 0$, $q > 0$, $p + q = 1$

(obviously, $p_{ij} = 0$ if $j \neq i + 1$ or 0). Find the equilibrium distribution for this MC.

12. If a finite MC is irreducible and $p_{ii} > 0$ for some i, then it is regular.

Every finite regular MC has a unique equilibrium distribution.

Use these two facts to prove the following

Theorem. An irreducible MC with a finite state space has a unique equilibrium distribution.

- 13. The Law of Large Numbers for a finite MC.
 - (a) Let $f: S \mapsto \mathbb{R}$ be a function on a the state space of our MC. Suppose that the initial distribution of the MC X_n is $\underline{\mu} = (\mu_1, ..., \mu_m)$, that is $P\{X_0 = i\} = \mu_i$. Show that then $Ef(X_n) = \sum_{j=1}^m \mu_j^{(n)} f(j)$, where $\mu_j^{(n)} = \sum_{j=1}^m \mu_j p_{ij}^{(n)}$.
 - (b) State the Law of Large Numbers for a finite MC.
 - (c) Use the LLN to explain the connection between the number of visits to a state i and π_i , where $\underline{\pi} = (\pi_1, ..., \pi_m)$ is the equilibrium distribution of an irreducible MC.

14. Recurrence.

- (a) Give the definition of a recurrent state of a Markov chain.
- (b) Let X_n be a Markov chain with a state space S and transition probabilities $\mathbb{P} = (p_{ij})_{i,j \in S}$. State the theorem which provides the necessary and sufficient condition for a state $i \in S$ to be recurrent in terms of the probabilities $p_{ii}^{(n)}$.
- c) We say that a MC is recurrent if all states of this chain are recurrent. In view of this definition:

Is a finite regular MC recurrent? Explain your answer.

Is an irreducible finite MC recurrent? Explain your answer.

(d) Put $f_i^{(n)} = P\{X_n = i, X_{n-1} \neq i, ..., X_1 \neq i \mid X_0 = i\}$ – the probability that the first return to i of a MC starting from i happens at time n.

Prove that

$$p_{ii}^{(n)} = \sum_{k=1}^{n-1} f_i^{(k)} p_{ii}^{(n-k)} + f_i^{(n)}.$$

Derive from here recursive formulae for $f_i^{(n)}$, n=1,2,...

What is the property of the sequence $f_i^{(n)}$ implying recurrence of i?

(e) Put $\beta_i = \sum_{k=1}^{\infty} f_i^{(k)}$. What is the probabilistic meaning of β_i ?

Let M be the number of returns to i. Prove the following statements

Lemma 1. Suppose that $\beta_i < 1$. Then $P\{M \ge k \mid X_0 = i\} = \beta_i^k$, where k = 1, 2, ...

Lemma 2. Suppose that $\beta_i < 1$. Then $P\{M = k | X_0 = i\} = \beta_i^k - \beta_i^{k+1}$, where k = 0, 1, 2...

Remark. Lemmas 1, 2 are correct also when $\beta_i = 1$; in this case they are very simple.

Lemma 3. If i is non-recurrent then $E(M) = \frac{\beta_i}{1-\beta_i}$.

Theorem. $\beta_i = 1$ if and only if $\sum_{n=1}^{\infty} p_{ii}^{(n)} = \infty$. Equivalently, $\beta_i < 1$ if and only if $\sum_{n=1}^{\infty} p_{ii}^{(n)} < \infty$.

(In other words, i is recurrent if and only if $\sum_{n=1}^{\infty} p_{ii}^{(n)} = \infty$.)

- 15. Prove that if i and j intercommunicate, then i is recurrent if and only if j is recurrent.
- 16. State the Theorem (the so called basic limit theorem of the theory of Markov chains) which establishes the relation between the $\lim_{n\to\infty} p_{ii}^{(n)}$ and the expectation of the return time R_i of the MC, starting from state i, to i: $E(R_i | X_0 = i) \equiv \sum_{k=1}^{\infty} k f_i^{(k)}$.
- 17. Poisson Processes.
 - (a) What is a Poisson random variable ξ with parameter μ ? Prove that $E\xi = \mu$, $Var\xi = \mu$. Prove that a sum of two independent r. v.'s having Poisson distribution is a Poisson r. v.

- (b) Give the axiomatic definition of a Poisson process.
- (c) Give the infinitesimal definition of a Poisson process.
- (d) Prove the following

Theorem. Suppose that X(t) is random process satisfying the conditions of the infinitesimal definition of a Poisson process. Then $P\{X(t) = k\} = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$, where k = 0, 1, 2...

Remark. You are supposed to prove that $p'_k(t) = -\lambda p_k(t) + \lambda p_{k-1}(t)$, where $p_k(t) \stackrel{\text{def}}{=} P\{X(t) = k\}$ and to check that $p_k(t) = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$ satisfies these equations as well as the relevant initial conditions.

18. Distributions associated with a Poisson process.

- (a) Define occurrence times W_j and sojourn times S_j for a Poisson process X(t).
- (b) Prove the following theorems.

Theorem 1. The sojourn times S_j , j = 1, 2, ..., form a sequence of independent identically distributed random variables whose density function is given by $f_{S_j}(t) = \lambda e^{-\lambda t}$, where $t \geq 0$.

Theorem 2. The occurrence times W_n , n = 1, 2, ... are random variables whose probability density function is given by $f_{W_n}(t) = \frac{\lambda^n t^{n-1} e^{-\lambda t}}{(n-1)!}$, where $t \ge 0$.

Theorem 3. Suppose that X(t) is a Poisson process and 0 < u < t. Then $P\{X(u) = k \mid X(t) = n\} = \binom{n}{k} (\frac{u}{t})^k (1 - \frac{u}{t})^{n-k}$, where $0 \le k \le n$.

(c) Let $W_1, ..., W_n$ be the event times of a Poisson process. Given that X(t) = n, what is the joint probability density function of random variables $W_1, ..., W_n$? State the corresponding theorem and write down the formula for

$$f_{\{W_1,...,W_n|X(t)=n\}}(x_1,...x_n).$$

Exercise. Prove this formula for the cases n = 1 and n = 2.

(d) Suppose that $R(W_1, ..., W_n)$ is a symmetric function of W_i . State the theorem allowing one to evaluate $E(R(W_1, ..., W_n) | X(t) = n)$ in terms of the uniform distribution on [0, t].

19. Birth Process.

- (a) Define what is a birth process.
- (b) Prove the following

Theorem 1. Suppose that X(t) is a birth process with X(0) = 0. Set $p_n(t) \stackrel{\text{def}}{=} P\{X(t) = n | X(0) = 0\}$ Then the functions $p_n(t)$ satisfy the following equations:

$$\begin{cases}
p'_n(t) = -\lambda_n p_n(t) + \lambda_{n-1} p_{n-1}(t) & n \ge 0 \\
p_0(0) = 1 & \text{if } n > 0.
\end{cases}$$
(1)

(c) Prove the following

Theorem 2. Equations (1) have a unique solution which can be obtained recursively using the following formulae:

$$\begin{cases}
p_0(t) = e^{-\lambda_0 t} \\
p_n(t) = \lambda_{n-1} e^{-\lambda_n t} \int_0^t e^{\lambda_n s} p_{n-1}(s) ds & n > 0
\end{cases}$$
(2)

20. Birth and Death Process.

- (a) Define what is a Birth and Death process. What is the infinitesimal generator of a Birth and death process?
- (b) Let S_i be the time the birth and death process, starting from i, spends in state i. Describe a typical trajectory of a B&D process in terms of random variables S_i and birth and death parameters λ_i , μ_i in the case when the birth parameters $\lambda_i > 0$ for all $i \geq 0$ and the death parameters $\mu_i > 0$ for i > 0 (as usual, $\mu_0 = 0$).
- (c) Prove that S_i is an exponential random variable with parameter $\lambda_i + \mu_i$.
- (d) State what are the backward and forward Kolmogorov equations related to a B&D process.
- (e) What is the equilibrium distribution of a B&D process. Prove that

$$w_j = \frac{\lambda_0 \lambda_1 \dots \lambda_{j-1}}{\mu_1 \mu_2 \dots \mu_j} w_0.$$

(f) Prove that if $\lambda_i = \lambda > 0$ for $i \geq 0$, $\mu_i = \mu > 0$ for $i \geq 1$, and $\lambda < \mu$, then the equilibrium distribution of this B&D process is given by $w_j = (\frac{\lambda}{\mu})^j (1 - \frac{\lambda}{\mu})$. (In other words, the equilibrium distribution is the geometric one.)