
MAS338 Probability III

The purpose of this list of questions is to help you to prepare for the exam by
revising the material of the course in a systematic way. Apart of the ability to
provide answers to these questions you are supposed to be able to solve problems
similar to those considered in courseworks.

1. The notion of a Markov Chain (MC).

(a) What is the definition of a Markov Chain?

(b) What is a transition matrix of a Markov Chain?

(c) Let Xn be a Markov Chain with a state space S = {1, . . . , m} and a transition
matrix P = (pij). Prove that

P{Xn = in, Xn−1 = in−1, . . . , X1 = i1 |X0 = i0} = pi0i1pi1i2 . . . pin−1in.

(d) Suppose that the initial distribution of a Markov Chain with a state space S is
given: P{X0 = i} = πi, where i ∈ S. Express the probability P{X2 = k} in
terms of pij, i, j ∈ S, and πi.

(e) Prove the following theorem:

Theorem. If Xn is a Markov Chain with a state space S = {1, . . . ,m} and a

transition matrix P = (pij), then P{Xn = j |X0 = i} = p
(n)
ij , where p

(n)
ij is the

(i, j)-element of the matrix Pn.

2. First step analysis.

(a) Define what is an absorbing state of a Markov Chain.

(b) Consider a Markov Chain with a state space S = {0, 1, 2} and a transition matrix

P =




1 0 0
α β γ
0 0 1


 .

(a) Explain why 0 and 2 are absorbing states of this chain.

(b) Let T be the time at which the chain is absorbed: T = min{n : Xn =
0 or Xn = 2 |X0 = 1}. Put u = P{XT = 0 |X0 = 1} – the probability that the
chain is absorbed by the state 0. Using the first step analysis derive the equation
satisfied by u and hence find u.

How would the answer change if you are asked to find ũ = P{XT = 2 |X0 = 1}?
(c) Let T be as above. Put v = E{T |X0 = 1} – the (conditional) expectation
of the absorbtion time. Using the first step analysis derive the equation satisfied
by v and hence find v.



3. Consider a Markov Chain with a state space S = {1, 2, 3, 4} and transition matrix

P




1 0 0 0
0.3 0.2 0.1 0.4
0 0.3 0.4 0.3
0 0 0 1


 .

State questions analogous to the ones asked in the previous problem and answer them.

4. Consider a Markov Chain with a state space S = {1, 2, 3, 4} and transition matrix
given above. Denote by ai, i = 2, 3, the probability of the event that a MC starting
from i will eventually be absorbed by one of the absorbing states. Use the first step
analysis to derive equations for these probabilities and prove that ai = 1.

5. Consider a Markov Chain with a state space S = {1, 2, 3, 4} and transition matrix
given above. Let ui be the probability that a MC starting from i is absorbed by the
state 4. Find these probabilities.

6. Consider a Markov Chain with a state space S = {1, 2, 3, 4} and transition matrix
given above. Let vi = E{T |X0 = i} be the mean time of absorbtion given that the
MC starts from i. Find these expectations.

7. Consider a Markov Chain with a state space S = {1, ..., m} and transition matrix
P = (pij). Suppose that this chain has absorbing states and let T be the time at
which the chain is absorbed by one of these states. Next, let f(i) be a function
defined on S. Put

wi = E(
T∑

j=0

f(Xj) |X0 = i).

Prove that

wi =f(i) if i is absorbing

wi =f(i) +
m∑

j=1

pijwj if i is not absorbing.

How should one choose the function f in order to obtain equations for ui? For vi?

8. A gambler is playing the following game. A fair 6-sided die is rolled repeatedly until
the sum of two consecutive throws is 3 for the first time. If 6 is rolled then the gambler
is paid £1; if 2 is rolled then the gambler pays £1. The gambler neither receives nor
pays any money if anything else is rolled. However, he does not pay anything if 2 is
rolled at the very end of the game.

Consider a Markov chain Xn with the state space S = {0, 6, 1, 2, 12, 21}, where 0
denotes the beginning of the game (that is X0 = 0) and it reappears every time when
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none of the numbers 1, 2, 6 shows up. The other states have a natural meaning: 6, 1,
and 2 are the values of Xn whenever they appear strictly before the end of the game,
whereas 12 and 21 denote the end of the game.

(a) Write down the transition matrix for this Markov chain.

(b) What is the expected number of rolls in this game?

(c) Obtain the mean value of the gain in this game and decide whether this game is
fair.

(d) If it turns out that this game is not fair, what should be the amount £z paid
for rolling a 6 to ensure that the modified game is fair. (No other payment is
changed.)

9. Define what is an equilibrium distribution of a Markov Chain Xt with a transition
matrix P = (pij), 1 ≤ i, j ≤ m.

Suppose that the initial distribution of the MC Xt is π, where π = (π1, ..., πm) is an
equilibrium distribution of this MC. What is then the probability P{X5 = i}? What
is the probability P{X5 = i, X6 = j}?

10. Give the definition of an irreducible MC. What is a regular MC? Is a regular chain
irreducible? Is an irreducible chain regular? (Wherever the answer is NO, give an
example illustrating this answer.)

Suppose that the state space of a MC is finite. State a theorem providing a sufficient
condition for existence of a unique equilibrium distribution of such a chain.

11. Consider a MC with an infinite state space S = {0, 1, 2, ...}. Suppose that the tran-
sition probabilities of this MC are given by

pi,0 = q, pi,i+1 = p, where p > 0, q > 0, p + q = 1

(obviously, pij = 0 if j 6= i + 1 or 0). Find the equilibrium distribution for this MC.

12. If a finite MC is irreducible and pii > 0 for some i, then it is regular.

Every finite regular MC has a unique equilibrium distribution.

Use these two facts to prove the following

Theorem. An irreducible MC with a finite state space has a unique equilibrium
distribution.

13. The Law of Large Numbers for a finite MC.

(a) Let f : S 7→ R be a function on a the state space of our MC. Suppose that the
initial distribution of the MC Xn is µ = (µ1, ..., µm), that is P{X0 = i} = µi. Show

that then Ef(Xn) =
∑m

j=1 µ
(n)
j f(j), where µ

(n)
j =

∑m
j=1 µip

(n)
ij .

(b) State the Law of Large Numbers for a finite MC.

(c) Use the LLN to explain the connection between the number of visits to a state i
and πi, where π = (π1, ..., πm) is the equilibrium distribution of an irreducible MC.
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14. Recurrence.

(a) Give the definition of a recurrent state of a Markov chain.

(b) Let Xn be a Markov chain with a state space S and transition probabilities
P = (pij)i,j∈S. State the theorem which provides the necessary and sufficient condition

for a state i ∈ S to be recurrent in terms of the probabilities p
(n)
ii .

c) We say that a MC is recurrent if all states of this chain are recurrent. In view of
this definition:

Is a finite regular MC recurrent? Explain your answer.

Is an irreducible finite MC recurrent? Explain your answer.

(d) Put f
(n)
i = P{Xn = i,Xn−1 6= i, ..., X1 6= i |X0 = i} – the probability that the

first return to i of a MC starting from i happens at time n.

Prove that

p
(n)
ii =

n−1∑

k=1

f
(k)
i p

(n−k)
ii + f

(n)
i .

Derive from here recursive formulae for f
(n)
i , n = 1, 2, ....

What is the property of the sequence f
(n)
i implying recurrence of i?

(e) Put βi =
∑∞

k=1 f
(k)
i . What is the probabilistic meaning of βi?

Let M be the number of returns to i. Prove the following statements

Lemma 1. Suppose that βi < 1. Then P{M ≥ k |X0 = i} = βk
i , where k = 1, 2....

Lemma 2. Suppose that βi < 1. Then P{M = k |X0 = i} = βk
i − βk+1

i , where
k = 0, 1, 2....

Remark. Lemmas 1, 2 are correct also when βi = 1; in this case they are very simple.

Lemma 3. If i is non-recurrent then E(M) = βi

1−βi
.

Theorem. βi = 1 if and only if
∑∞

n=1 p
(n)
ii = ∞. Equivalently, βi < 1 if and only if∑∞

n=1 p
(n)
ii < ∞.

(In other words, i is recurrent if and only if
∑∞

n=1 p
(n)
ii = ∞.)

15. Prove that if i and j intercommunicate, then i is recurrent if and only if j is recurrent.

16. State the Theorem (the so called basic limit theorem of the theory of Markov chains)

which establishes the relation between the limn→∞ p
(n)
ii and the expectation of the

return time Ri of the MC, starting from state i, to i: E(Ri |X0 = i) ≡ ∑∞
k=1 kf

(k)
i .

17. Poisson Processes.

(a) What is a Poisson random variable ξ with parameter µ? Prove that Eξ =
µ, Varξ = µ. Prove that a sum of two independent r. v.’s having Poisson
distribution is a Poisson r. v.

Page 4



(b) Give the axiomatic definition of a Poisson process.

(c) Give the infinitesimal definition of a Poisson process.

(d) Prove the following

Theorem. Suppose that X(t) is random process satisfying the conditions of

the infinitesimal definition of a Poisson process. Then P{X(t) = k} = (λt)ke−λt

k!
,

where k = 0, 1, 2....

Remark. You are supposed to prove that p′k(t) = −λpk(t) + λpk−1(t), where

pk(t)
def
= P{X(t) = k} and to check that pk(t) = (λt)ke−λt

k!
satisfies these equations

as well as the relevant initial conditions.

18. Distributions associated with a Poisson process.

(a) Define occurrence times Wj and sojourn times Sj for a Poisson process X(t).

(b) Prove the following theorems.

Theorem 1. The sojourn times Sj, j = 1, 2, ..., form a sequence of indepen-
dent identically distributed random variables whose density function is given by
fSj

(t) = λe−λt, where t ≥ 0.

Theorem 2. The occurrence times Wn, n = 1, 2, ... are random variables whose
probability density function is given by fWn(t) = λntn−1e−λt

(n−1)!
, where t ≥ 0.

Theorem 3. Suppose that X(t) is a Poisson process and 0 < u < t. Then
P{X(u) = k |X(t) = n} = (n

k)(u
t
)k(1− u

t
)n−k, where 0 ≤ k ≤ n.

(c) Let W1, ..., Wn be the event times of a Poisson process. Given that X(t) = n,
what is the joint probability density function of random variables W1, ..., Wn?
State the corresponding theorem and write down the formula for

f{W1,...,Wn|X(t)=n}(x1, ...xn).

Exercise. Prove this formula for the cases n = 1 and n = 2.

(d) Suppose that R(W1, ...,Wn) is a symmetric function of Wi. State the theorem
allowing one to evaluate E(R(W1, ..., Wn) |X(t) = n) in terms of the uniform
distribution on [0, t].

19. Birth Process.

(a) Define what is a birth process.

(b) Prove the following

Theorem 1. Suppose that X(t) is a birth process with X(0) = 0. Set pn(t)
def
=

P{X(t) = n|X(0) = 0} Then the functions pn(t) satisfy the following equations:





p′n(t) = −λnpn(t) + λn−1pn−1(t) n ≥ 0

p0(0) = 1

pn(0) = 0 if n > 0.

(1)
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(c) Prove the following

Theorem 2. Equations (1) have a unique solution which can be obtained re-
cursively using the following formulae:

{
p0(t) = e−λ0t

pn(t) = λn−1e
−λnt

∫ t

0
eλnspn−1(s)ds n > 0

(2)

20. Birth and Death Process.

(a) Define what is a Birth and Death process. What is the infinitesimal generator
of a Birth and death process?

(b) Let Si be the time the birth and death process, starting from i, spends in state
i. Describe a typical trajectory of a B&D process in terms of random variables
Si and birth and death parameters λi, µi in the case when the birth parameters
λi > 0 for all i ≥ 0 and the death parameters µi > 0 for i > 0 (as usual, µ0 = 0).

(c) Prove that Si is an exponential random variable with parameter λi + µi.

(d) State what are the backward and forward Kolmogorov equations related to a
B&D process.

(e) What is the equilibrium distribution of a B&D process. Prove that

wj =
λ0λ1...λj−1

µ1µ2...µj

w0.

(f) Prove that if λi = λ > 0 for i ≥ 0, µi = µ > 0 for i ≥ 1, and λ < µ, then the
equilibrium distribution of this B&D process is given by wj = (λ

µ
)j(1 − λ

µ
). (In

other words, the equilibrium distribution is the geometric one.)
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