
Long Term Behaviour of Markov Chains

1 Summary of known facts pertinent to the topic

Let Xn, n = 0, 1, 2, ... be a MC with the state space S = (1, 2, ...m), transition

probabilities pij
def
= P{Xn+1 = j |Xn = i}, and the transition matrix

P = (pij) =




p11 . . . p1m
...

. . .
...

pm1 . . . pmm




Theorem 1.1
Put p

(n)
ij

def
= P{Xn = j |X0 = i} and let P(n) def

= (p
(n)
ij ), 1 ≤ i, j ≤ m, be the m ×m

matrix of these probabilities. Then

P(n) = Pn. (1)

Formula (1) is equivalent to saying that the probability for Xn to reach state j after
n transitions starting from i is equal to the (i, j)-th element of the n-th power of P.

Suppose that the distribution of X0 is given by µ(0) = (µ
(0)
1 , µ

(0)
2 , ..., µ

(0)
m ), where

µi
0

def
= P{X0 = i}. Let µ

(n)
i

def
= P{Xn = i}.

Lemma 1.2
µ(n) = µ(0)Pn

Proof. P{Xn = j} by Tot. Prob. Law
=

∑m
i=1 µ

(0)
i P{Xn = j |X0 = i} = (µ(0)Pn)j. ¤

We say that π = (p1, ..., pm) is a probability vector if all its components pi ≥ 0 and
their sum is 1: p1 + ... + pm = 1.

Definition 1.3
A probability vector π is an equilibrium distribution of a MC if πP = π.

The probabilistic meaning of this notion is explained by the following

Theorem 1.4
If the initial distribution of the MC Xt coincides with its equilibrium distribution
then P{Xn = j} = pj for all n (and j).

Proof. We have to show that µ(n) = π. By the assumption of our theorem, µ(0) = π
and hence, by Lemma 1.2

µ(n) = µ(0)Pn = πPn.

But
πPn = πPPn−1 = πPn−1 = πPn−2 = ... = π.

¤
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2 The questions we want to study

There is a wide variety of questions which are often asked about the long term be-
haviour of Markov chains. In fact the larger part of the theory of Markov chains is
the one studying different aspects of their long term behaviour. Here are examples of
such questions and these are the ones we are going to discuss in this course.

1. Suppose that X0 = i.

What can be said about P{Xn = j |X0 = i} as n is increasing? More precisely,
is there a limit limn→∞ P{Xn = j |X0 = i}?
If yes, does this limit depend on i? and can it be found?

2. For large n, what is the proportion of time the chain would spend in state i?

It is meant that every time the MC reaches i it spends one unit of time in i.
This

ni
def
= #{k such that Xk = i and k ≤ n }

and the proportion of time spent by the chain in i by time n is ni

n
. We thus ask:

Is there a limit limn→∞ ni

n
? And if yes, can it be found?

3. Let f(i) be a real valued function on S. Is there a limit

lim
n→∞

1

n
(f(X0) + f(X1) + ... + f(Xn−1)

We shall show that the second question is a particular case of this one.

3 Example: the two state chain

If S = {1, 2} then the transition matrix is

P =

(
1− α α

β 1− β

)

where 0 ≤ α, β ≤ 1.

Lemma 3.1
Suppose that α + β 6= 0. Then

Pn =
1

α + β

(
β α
β α

)
+

(1− α− β)n

α + β

(
α −α
−β β

)
(2)

Proof. We use induction. Base of induction: n = 1. We have to check that

P =
1

α + β

(
β α
β α

)
+

1− α− β

α + β

(
α −α
−β β

)
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which is a straightforward computation. Suppose that the statement holds for some
n ≥ 1; we have to deduce from here that it holds for n+1 (the main step of induction).
Indeed

Pn+1 = PPn = P
[

1

α + β

(
β α
β α

)
+

(1− α− β)n

α + β

(
α −α
−β β

)]

=
1

α + β

(
1− α α

β 1− β

)(
β α
β α

)
+

(1− α− β)n

α + β

(
1− α α

β 1− β

)(
α −α
−β β

)

=
1

α + β

(
β α
β α

)
+

(1− α− β)n+1

α + β

(
α −α
−β β

)

Once again, the last step follows from a direct computation. ¤
We shall now compute the limn→∞ Pn. But we start with the two simple cases where
(2) will not be used.

1. Suppose that α + β = 0. This is equivalent to saying that α = β = 0. Then

P =

(
1 0
0 1

)
and thus lim

n→∞
Pn =

(
1 0
0 1

)

The probabilistic meaning of this case is obvious: both states are absorbing and once
thechain starts at i it remains in i forever.

2. Suppose that α + β = 2. This is equivalent to saying that α = β = 1. Then

P =

(
0 1
1 0

)
and thus P2k =

(
1 0
0 1

)
and P2k+1 =

(
0 1
1 0

)

The sequence of matrices Pn does not have a limit. The probabilistic meaning of this
case is also simple: the chain moves from the state it is in to another one at each
transition, e. g. if X0 = 1 then the trajectory of the chain is 1212121... In fact, this
is a deterministic movement with the initial state being the only random state of the
chain.

Exercises. (a) Suppose that P{X0 = 1} = 0.3. What is then P{X27 = 2}? (b) Prove
that the only equilibrium distribution of this chain is given by π = (0.5, 0.5).

3. Finally, if 0 < α + β < 2 then |1−α− β| < 1. Hence limn→∞(1−α− β)n = 0 and
it follows from (2) that

lim
n→∞

Pn =
1

α + β

(
β α
β α

)
≡

(
β

α+β
α

α+β
β

α+β
α

α+β

)
(3)

We see that limn→∞ P{Xn = j |X0 = i} =

{
β

α+β
if j = 1

β
α+β

if j = 2
This answers the first

question from section 2. Moreover, we also see that these limits do not depend on i:
the chain forgets its starting point!
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4 General results
Definition 4.1
A MC is irreducible if for all i, j ∈ S there is some k ≥ 1 with p

(k)
ij > 0. A MC is

regular if there is some k ≥ 1 such that p
(k)
ij > 0 for all i, j ∈ S.

Remarks.
1. Note that a MC is regular if and only if there is a k such that Pk > 0. (We use here
the following convention: if B = (bij) is a matrix then the inequality B > 0 means
that all matrix elements are strictly positive: bij > 0.
2. Irreducible chains do not have absorbing states (explain this, it is very simple).

3. A regular chain is irreducible but the reverse is false. Example: if P =

(
0 1
1 0

)

then P2 =

(
1 0
0 1

)
, P3 =

(
0 1
1 0

)
... This chain is irreducible but not regular.

However, here is a sufficient condition for regularity of irreducible chains.

Theorem 4.2
If a finite MC is irreducible and there is i ∈ S such that pii > 0 then this chain is
regular.

(Remember that the term “finite MC” means that the number of states, #(S), is
finite.)

Definition 4.3
If µ(n) → w as n →∞ then the probability vector w is called the limiting distribution
of the MC Xn.

Theorem 4.4
Let P be a transition matrix of a finite regular MC. Then
1. Pn → W as n → ∞, where W is a matrix with all rows being equal to the same
probability vector w = (w1, ..., wm).
2. w is the unique solution of

wP = w with
m∑

i=1

wi = 1. (4)

Proof will not be given and you are not required to know it. However you
are required to know the statement of this theorem and to be able to use
it. This applies also to Theorems 4.5 and 4.6 stated below.

Corollary. w is the limiting distribution of the MC Xn. Moreover, it does not
depend on µ0. Indeed, the first statement of the Theorem means that limn→∞ P{Xn =
j |X0 = i} = wj does not depend on i. Hence

lim
n→∞

P{Xn = j} = lim
n→∞

(
m∑

i=1

µiP{Xn = j |X0 = i}) =
m∑

i=1

µiwj = wj.
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By now, you must have noticed that Theorem 4.4 provides a complete answer to the
first question stated in section 2.

Remarks.

1. It is useful to rewrite equations (4) in a more explicit form:
{∑m

i=1 wi = 1,∑m
i=1 wipij = wj, 1 ≤ j ≤ m

(5)

2. Equations (4) imply that w is the equilibrium distribution for or MC (see Definition
1.3). It is easy to show that every limiting distribution is an equilibrium distribu-
tion. The reverse is wrong: µ(n) may not converge to a limit even if the equilibrium
distribution is unique.
The answer to the second question is given by the following

Theorem 4.5
Let P be a transition matrix of a finite regular MC. Let ni be the number of visits to
state i by time n. Then

ni

n
→ wi as n →∞

in the following sense: for any ε > 0

P{ |ni

n
− wi| ≥ ε } → 0 as n →∞. (6)

This theorem is a particular case of the following Law of Large Numbers. Let f(j)

be a function defined on S and taking real values. Set E(f)
def
=

∑m
j=1 wjf(j).

Theorem 4.6
Let P be a transition matrix of a finite regular MC. Let ni be the number of visits to
state i by time n. Then

1

n
[f(X0) + f(X1) + ... + f(Xn−1)] → E(f) as n →∞

in the following sense: for any ε > 0

P{ | 1
n

[f(X0) + f(X1) + ... + f(Xn−1)]− E(f)| ≥ ε } → 0 as n →∞. (7)

Remarks.
1. Note that the results stated in Theorems 4.5 and 4.6 do not depend on the choice
of the initial distribution of the MC!

2. To obtain Theorem 4.5 from Theorem 4.6, fix i and set f(j) =

{
1 if j = i

0 if j = i
Then

f(X0) + f(X1) + ... + f(Xn−1) = ni and E(f) = wi which means that (7) implies (6).

Example. Explain why the following chains, given by their transition matrices, are
regular. In each case find the limiting distribution. What proportion of time do you
expect the chain to spend in each state in the long run?
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a) 


1/10 1/2 0 2/5
0 0 1 0
0 0 0 1
1 0 0 0




b) 


0 1/3 0 2/3
0 0 1 0
1 0 0 0
1 0 0 0




Solution to problem (a) was explained in detail in lectures. Solutions to
both problems can be found on the course’s web page:
http://www.maths.qmul.ac.uk/∼ig/MAS338/ and go to Coursework 2007/8,
CW3.
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