MAS/111 Convergence and Continuity: Coursework 8

DEADLINE: Thursday of week 11, at 11:00 am.

Problem 1. Real numbers can be defined via their decimal expansions, such as

$$
0.3192 \ldots=3 \times \frac{1}{10^{1}}+1 \times \frac{1}{10^{2}}+9 \times \frac{1}{10^{3}}+2 \times \frac{1}{10^{4}}+\cdots
$$

These expansions are examples of infinite series.

1) Find the rational numbers presented by the following sums:

$$
\sum_{k=1}^{\infty} \frac{2}{10^{k}} ; \quad \frac{1}{10}+\frac{2}{10^{2}}+\frac{1}{10^{3}}+\frac{2}{10^{4}}+\ldots=\sum_{k=1}^{\infty}\left(\frac{1}{10^{2 k-1}}+\frac{2}{10^{2 k}}\right)
$$

2) Determine the rational number having the following decimal expansion

$$
0.2035035035035 \ldots
$$

Problem 2. The series

$$
\begin{equation*}
\zeta(s):=\sum_{n=1}^{\infty} \frac{1}{n^{s}} \quad s>1 \tag{1}
\end{equation*}
$$

converges if $s>1$ and diverges if $0 \leq s \leq 1$.
Consider also another series:

$$
\begin{equation*}
S:=\sum_{n=1}^{\infty} a_{n} \tag{2}
\end{equation*}
$$

The following statements are useful for determining whether or not a series is converging.

1. The necessary and sufficient condition for convergence of an alternating series (see notes).
2. The NECESSARY (but NOT sufficient) condition for convergence of a series: $\lim _{n \rightarrow \infty} a_{n}=0$
3. The comparison test: consider one more series

$$
\begin{equation*}
\sum_{n=1}^{\infty} b_{n} \tag{3}
\end{equation*}
$$

If for all $n 0 \leq a_{n} \leq b_{n}$ then: (a) series (2) converges if series (3) converges; (b) series (3) diverges if series (2) diverges.
4. The ratio test: suppose that $\forall n \geq 1 a_{n} \neq 0$ and that $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lambda$ exists. Then: (a) series (2) converges if $\lambda<1$; (b) series (2) diverges if $\lambda>1$. Test is inconclusive if $\lambda=1$.
Determine, with a reason, whether each of the following series is convergent or divergent. To do that you may/should use the information about series (1) as well as statements $1-4$.

1) $\quad \sum_{n=1}^{\infty} \frac{1}{(n+1)^{\frac{1}{3}}}$
2) $\quad \sum_{n=1}^{\infty} \frac{n^{2}}{n^{2}+n+1}$
3) $\quad \sum_{n=1}^{\infty} \frac{2^{n}}{n^{8}}$
4) $\quad \sum_{n=1}^{\infty} \frac{n!}{n^{n}}$
5) $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n(n+2)}}$
6) $\quad \sum_{n=1}^{\infty} \frac{1}{\sqrt{n\left(n^{2}+1\right)}}$
7) $\quad \sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+2)}}$
8) $\quad \sum_{n=1}^{\infty} \frac{(-1)^{n-1} n}{\sqrt{n^{2}+1}}$

Problem 3. The condensation test: Let a_{n} be a decreasing sequence of positive real numbers. Then

$$
\sum_{n=1}^{\infty} a_{n} \text { converges } \quad \Longleftrightarrow \quad \sum_{m=0}^{\infty} 2^{m} a_{2^{m}} \quad \text { converges. }
$$

For the following series, use the condensation/comparison test to determine convergence/divergence.

1) $\quad \sum_{n=2}^{\infty} \frac{1}{n \ln (n)}$
2) $\quad \sum_{n=2}^{\infty} \frac{1}{n(\ln (n))^{2}}$
3) $\quad \sum_{n=2}^{\infty} \frac{\ln (n)}{n^{2}}$
4) $\quad \sum_{n=3}^{\infty} \frac{1}{n \ln (n) \ln (\ln (n))}$
[You may assume the following properties of the logarithm: i) for all $a, b>0$, $\ln (a b)=\ln (a)+\ln (b)$ (in particular $\ln \left(a^{n}\right)=n \ln (a)$); ii) $\ln (1)=0<\ln (2)<$ 1 ; iii) $a<b \Longrightarrow \ln (a)<\ln (b)$.]
