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MAS/111 Convergence and Continuity: Coursework 8

DEADLINE: Thursday of week 11, at 11:00 am.

Problem 1. Real numbers can be defined via their decimal expansions,
such as

1

3192... = —
0.319 3 x X 157

1
1 9 X —= +2
+9x 155 + +

100 T 102

These expansions are examples of infinite series.

1) Find the rational numbers presented by the following sums:
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2) Determine the rational number having the following decimal expansion

0.2035 035035 035. ..

Problem 2. The series
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converges if s > 1 and diverges if 0 < s < 1.

Consider also another series:
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The following statements are useful for determining whether or not a series
is converging.

1. The necessary and sufficient condition for convergence of an alternating
series (see notes).

2. The NECESSARY (but NOT sufficient) condition for convergence of a
series: lim, oo ap =0

3. The comparison test: consider one more series
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If for all n 0 < a,, < b, then: (a) series (2) converges if series (3) converges;
(b) series (3) diverges if series (2) diverges.

4. The ratio test: suppose that Vn > 1 a, # 0 and that lim,,_, \“Zzl\ =\
exists. Then: (a) series (2) converges if A < 1; (b) series (2) diverges if
A > 1. Test is inconclusive if A = 1.

Determine, with a reason, whether each of the following series is convergent

or divergent. To do that you may/should use the information about series
(1) as well as statements 1 - 4.
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Problem 3. The condensation test: Let a, be a decreasing sequence of
positive real numbers. Then
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For the following series, use the condensation/comparison test to determine

convergence/divergence.
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[You may assume the following properties of the logarithm: i) for all a,b > 0,
In(ab) = In(a)+In(d) (in particular In(a™) = nln(a)); i) In(1) =0 < In(2) <
1; 4it) a < b= In(a) < In(b).]




