## MAS/111 Convergence and Continuity: Coursework 4

DEADLINE: Thursday of week 6, at 11:00 am.

Problem 1. Prove that if a real sequence converges to a limit, then every subsequence also converges to the same limit.

Problem 2. Give examples of real sequences $\left(a_{n}\right)$, such that

1) $a_{n} \in[2,3)$ and $\left(a_{n}\right)$ converges to 3 .
2) $a_{n} \in(2,3)$ and $\left(a_{n}\right)$ does not converge.
3) $\left(a_{n}\right)$ converges and is neither increasing nor decreasing.
4) $\left(a_{n}\right)$ is not bounded above, and not bounded below.

Remember:We say that $\left(a_{n}\right)$ is bounded below if there is a $c \in \mathbb{R}$ such that $a_{n} \geq c$ for all $n ;\left(a_{n}\right)$ is bounded above if there is a $d \in \mathbb{R}$ such that $a_{n} \leq c$ for all $n$.)
5) $\left(a_{n}\right)$ does not converge, but it has a convergent subsequence.

Briefly justify your answer in each case.

Problem 3. Prove from first principles

1) $\lim _{n \rightarrow \infty} \frac{n+2}{n}=1$
2) $\lim _{n \rightarrow \infty} \frac{n^{2}}{3 n^{2}-1}=\frac{1}{3}$
3) $\lim _{n \rightarrow \infty} \frac{2 n^{2}+n}{5 n^{2}+n+1}=\frac{2}{5}$

Problem 4. Using the basic lemmas (chapter 3), compute $\lim _{n \rightarrow \infty} a_{n}$ for the following values of $a_{n}$

1) $a_{n}=\frac{n^{2}}{5-3 n}+\frac{n}{3}$
2) $a_{n}=\frac{n}{n+\frac{1}{n+\frac{1}{n}}}$
3) $a_{n}=\sum_{k=0}^{b} \frac{(-1)^{k}}{n^{k}} \quad b \in \mathbb{N}$
[Explain which lemmas are used at each stage of the proofs. In 3), use induction on $b$.]

Problem 5. Prove that

$$
\lim _{n \rightarrow \infty}\left(1-\frac{1}{n^{a}}\right)^{n}=1 \quad a \in \mathbb{N}, a>1
$$

[Use Bernoulli inequality ${ }^{1}$, the fact that $\lim _{n \rightarrow \infty} \frac{1}{n^{b}}=0$ for any $b>0$, and the definition of the limit.]

Problem 6. Prove that

$$
\text { 1) } \lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0
$$

hence compute
2) $\lim _{n \rightarrow \infty} \sqrt{n^{a}+1}-\sqrt{n^{a}}$
3) $\lim _{n \rightarrow \infty} \sqrt{n+\sqrt{n}}-\sqrt{n} \quad a \in \mathbb{N}$.
[Transfer square roots at denominator: $\sqrt{A}-\sqrt{B}=\frac{A-B}{\sqrt{A}+\sqrt{B}}$.]

Problem 7. Let $m$ be a non-negative integer, let $c_{0}, \ldots, c_{m}$ be real numbers, and let

$$
f: \mathbb{R} \rightarrow \mathbb{R} \quad x \mapsto \sum_{k=0}^{m} c_{k} x^{k}
$$

Prove that if $\left(a_{n}\right)$ is a sequence of real numbers converging to $l$, then the sequence $\left(f\left(a_{n}\right)\right)$ converges to $f(l)$.
[Use induction].

[^0]
[^0]:    ${ }^{1}$ problem 5 , cwork 1

