cwork4.tex 25/10/2007

MAS/111 Convergence and Continuity: Coursework 4

DEADLINE: Thursday of week 6, at 11:00 am.

Problem 1. Prove that if a real sequence converges to a limit, then every
subsequence also converges to the same limit.

Problem 2. Give examples of real sequences (ay,), such that

1) an € [2,3) and (ay) converges to 3.

2) a, €(2,3) and (a,) does not converge.

3) (an) converges and is neither increasing nor decreasing.

4) (ay) is not bounded above, and not bounded below.

Remember:We say that (a,) is bounded below if there is a ¢ € R such that
an > c for all n; (a,) is bounded above if there is a d € R such that a, < ¢
for all n.)

5) (ap) does not converge, but it has a convergent subsequence.

Briefly justify your answer in each case.

Problem 3. Prove from first principles
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Problem 4. Using the basic lemmas (chapter 3), compute lim,, . a, for
the following values of a,,
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[Explain which lemmas are used at each stage of the proofs. In 3), use
induction on b.

Problem 5. Prove that
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[Use Bernoulli inequality!, the fact that lim,, . % = 0 for any b > 0, and
the definition of the limit.]

Problem 6. Prove that
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[Transfer square roots at denominator: VA —+/B = TAT \/E']

Problem 7. Let m be a non-negative integer, let cy, ..., ¢y, be real num-
bers, and let

m
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Prove that if (a,) is a sequence of real numbers converging to [, then the
sequence (f(an)) converges to f(1).

[Use induction)].
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