cwork4.tex 25/10/2007

MAS/111 Convergence and Continuity: Coursework 4

DEADLINE: Thursday of week 6, at 11:00 am.

Problem 1. Prove that if a real sequence converges to a limit, then every subsequence also converges to the same limit.

Problem 2. Give examples of real sequences (a_n) , such that

- 1) $a_n \in [2,3)$ and (a_n) converges to 3.
- 2) $a_n \in (2,3)$ and (a_n) does not converge.
- 3) (a_n) converges and is neither increasing nor decreasing.
- 4) (a_n) is not bounded above, and not bounded below.

Remember: We say that (a_n) is bounded below if there is a $c \in \mathbb{R}$ such that $a_n \geq c$ for all n; (a_n) is bounded above if there is a $d \in \mathbb{R}$ such that $a_n \leq c$ for all n.)

5) (a_n) does not converge, but it has a convergent subsequence.

Briefly justify your answer in each case.

Problem 3. Prove from first principles

1)
$$\lim_{n \to \infty} \frac{n+2}{n} = 1$$

2)
$$\lim_{n \to \infty} \frac{n^2}{3n^2 - 1} = \frac{1}{3}$$

3)
$$\lim_{n \to \infty} \frac{2n^2 + n}{5n^2 + n + 1} = \frac{2}{5}$$

Problem 4. Using the basic lemmas (chapter 3), compute $\lim_{n\to\infty} a_n$ for the following values of a_n

1)
$$a_n = \frac{n^2}{5-3n} + \frac{n}{3}$$
 2) $a_n = \frac{n}{n+\frac{1}{n+\frac{1}{n}}}$ 3) $a_n = \sum_{k=0}^{b} \frac{(-1)^k}{n^k} \quad b \in \mathbb{N}$

[Explain which lemmas are used at each stage of the proofs. In 3), use induction on b.]

Problem 5. Prove that

$$\lim_{n \to \infty} \left(1 - \frac{1}{n^a} \right)^n = 1 \qquad a \in \mathbb{N}, \ a > 1.$$

[Use Bernoulli inequality¹, the fact that $\lim_{n\to\infty} \frac{1}{n^b} = 0$ for any b > 0, and the definition of the limit.]

Problem 6. Prove that

1)
$$\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0$$

hence compute

2)
$$\lim_{n \to \infty} \sqrt{n^a + 1} - \sqrt{n^a}$$
 3) $\lim_{n \to \infty} \sqrt{n + \sqrt{n}} - \sqrt{n}$ $a \in \mathbb{N}$.

[Transfer square roots at denominator: $\sqrt{A} - \sqrt{B} = \frac{A-B}{\sqrt{A}+\sqrt{B}}$.]

Problem 7. Let *m* be a non-negative integer, let c_0, \ldots, c_m be real numbers, and let

$$f: \mathbb{R} \to \mathbb{R}$$
 $x \mapsto \sum_{k=0}^{m} c_k x^k$

Prove that if (a_n) is a sequence of real numbers converging to l, then the sequence $(f(a_n))$ converges to f(l).

[Use induction].

¹problem 5, cwork 1