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The evolution of many complex systems, including the World Wide Web, business, and citation net-
works, is encoded in the dynamic web describing the interactions between the system’s constituents. De-
spite their irreversible and nonequilibrium nature these networks follow Bose statistics and can undergo
Bose-Einstein condensation. Addressing the dynamical properties of these nonequilibrium systems within
the framework of equilibrium quantum gases predicts that the “first-mover-advantage,” “fit-get-rich,” and
“winner-takes-all” phenomena observed in competitive systems are thermodynamically distinct phases
of the underlying evolving networks.

DOI: 10.1103/PhysRevLett.86.5632 PACS numbers: 89.75.Hc, 03.75.Fi, 05.65.+b, 87.23.Ge
Competition for links is a common feature of complex
systems: on the World Wide Web (www) the sites com-
pete for URLs to enhance their visibility [1], in the busi-
ness world companies compete for links to consumers [2],
and in the scientific community scientists and publications
compete for citations, a measure of their impact on the
field [3]. A common feature of these systems is that the
nodes self-organize into a complex network, whose topol-
ogy and evolution closely reflect the dynamics and out-
come of this competition [1,3–6]. Here we show that,
despite their nonequilibrium and irreversible nature, evolv-
ing networks can be mapped into an equilibrium Bose gas
[7], nodes corresponding to energy levels, and links rep-
resenting particles. This mapping predicts that the com-
mon epithets used to characterize competitive systems,
such as “winner takes all,” “fit get rich” (FGR), or “first
mover advantage,” emerge naturally as thermodynamically
and topologically distinct phases of the underlying com-
plex evolving network. In particular, we predict that such
networks can undergo Bose-Einstein (BE) condensation,
in which a single node captures a macroscopic fraction
of links.

Fitness model [8].—Consider a network that grows
through the addition of new nodes such as the creation of
new webpages, the emergence of new companies, or the
publication of new papers. At each time step we add a
new node, connecting it with m links to the nodes already
present in the system. The rate at which nodes acquire
links can vary widely as supported by measurements on
the www [4], and by empirical evidence in citation [3] and
economic networks. To incorporate the different ability
of the nodes to compete for links we assign a fitness pa-
rameter to each node h, chosen from a distribution r�h�,
accounting for the differences in the content of webpages,
the quality of products and marketing of companies, or
the importance of the findings reported in a publication.
The probability Pi that a new node connects one of its m
links to a node i already present in the network depends
on the number of links ki and on the fitness hi of node
0031-9007�01�86(24)�5632(4)$15.00
i, such that

Pi �
hikiP
� h�k�

. (1)

Equation (1) incorporates in the simplest possible way
the fact that new nodes link preferentially to nodes with
higher k [9] (i.e., connecting to more visible websites, fa-
voring more established companies, or citing more cited
papers) and with larger fitness (i.e., websites with better
content, companies with better products and sales prac-
tice, or papers with novel results). Thus fitness �hi� and
the number of links �ki� jointly determine the attractive-
ness and evolution of a node.

Mapping to a Bose gas.—We assign an energy ei to
each node, determined by its fitness hi through the relation

ei � 2
1
b

loghi , (2)

where b is a parameter playing the role of inverse tem-
perature, b � 1�T , whose relevance to real networks will
be discussed later. A link between two nodes i and j
with energies ei and ej (e.g., fitnesses hi and hj) corre-
sponds to two noninteracting particles on the energy lev-
els ei and ej (Fig. 1). Adding a new node to the network
corresponds to adding a new energy level ei and 2m par-
ticles to the system. Of these 2m particles, some m are
deposited on the level ei (corresponding to the m outgoing
link that node i processes), while the other m particles are
distributed between the other energy levels (representing
the links pointing to m nodes present in the system), the
probability that a particle lands on level i being given by
(1). Deposited particles are inert, i.e., they are not allowed
to jump to other energy levels.

Each node (energy level) added to the system at time ti

with energy ei is characterized by the occupation number
ki�ei , t, ti�, denoting the number of links (particles) that
the node (energy level) has at time t. The rate at which
level ei acquires new particles is
© 2001 The American Physical Society
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FIG. 1. Schematic illustration of the mapping between the net-
work model and the Bose gas. (a) In the network of five nodes
(continuous circles and lines) each node is characterized by a
fitness hi chosen from a distribution r�h�. Equation (2) assigns
an energy ei to each hi , generating a system of random energy
levels (right). A link from node i to node j corresponds to a
particle at level ei and one at ej . The network evolves by adding
a new node (dashed circle, h6) at each time step which connects
to other m � 2 nodes (dashed lines), chosen randomly follow-
ing (1). In the gas this results in the addition of a new energy
level (e6, dashed line), populated by m � 2 particles, and the
deposition of m � 2 other particles at energy levels to which
h6 is connected (e2 and e5). The number of energy levels and
particles increases linearly with time, as t and 2mt, respectively.
(b) In the FGR phase we have a continuous connectivity distri-
bution, the several highly connected nodes linking the numerous
small nodes together. In the energy diagram this corresponds to
a decreasing occupation level with increasing energy. (c) In the
Bose-Einstein condensate the fittest node attracts a finite frac-
tion of all links, corresponding to a highly populated energy
level and only sparsely populated higher energies. In (b) and
(c) the diagram shows only incoming links, ignoring the default
m � 2 particles on each energy level corresponding to the out-
going links.

≠ki�ei , t, ti�
≠t

� m
e2bei ki�ei , t, ti�

Zt
, (3)

where Zt is the partition function, defined as

Zt �
tX

j�1

e2bej kj�ej , t, tj� . (4)

We assume that each node increases its connectivity fol-
lowing a power law

ki�ei , t, ti� � m

µ
t
ti

∂f�ei�
, (5)

where f�e� is the energy dependent dynamic exponent.
Since h is chosen randomly from the distribution r�h�,
the energy levels are chosen from the distribution g�e� �
br�e2be�e2be . We can now determine Zt by averaging
over g�e�, i.e.,
�Zt� �
Z

de g�e�
Z t

1
dt0 e2bei k�e, t, t0�

� mz21t�1 1 O�t2a�� , (6)

where

1
z

�
Z

de g�e�
e2be

1 2 f�e�
(7)

is the inverse fugacity and a � mine�1 2 f�e�� . 0.
Since z is positive for any b fi 0 we introduce the
chemical potential m as z � ebm, which allows us to
write (6) and (7) as

e2bm � lim
t!`

�Zt�
mt

. (8)

By using (8) we can solve the continuum equation (3),
finding in a self-consistent way the solutions of form (5),
where the dynamic exponent is

f�e� � e2b�e2m�. (9)

By combining (7) and (9), we find that the chemical po-
tential is the solution of the equation

I�b, m� �
Z

de g�e�
1

eb�e2m� 2 1
� 1 . (10)

The system defined above has a number of properties that
make it an unlikely candidate for an equilibrium Bose gas
[7]. First, the inertness of the particles is a nonequilib-
rium feature, in contrast with the ability of particles in a
quantum gas to jump between energy levels, leading to a
temperature driven equilibration. Second, both the number
of eligible energy levels (nodes) and the particles populat-
ing them (links) increase linearly in time, in contrast with
the fixed system size employed in quantum systems. De-
spite these apparent differences, Eq. (10) indicates that in
the thermodynamic limit �t ! `� the fitness model maps
into a Bose gas. Indeed, since in an ideal gas of volume
y � 1, we have [7]Z

de g�e�n�e� � 1 , (11)

where n�e� is the occupation number of a level with energy
e. Equation (10) indicates that for the inert gas inspired
by the fitness model the occupation number follows the
familiar Bose statistics [7]

n�e� �
1

eb�e2m� 2 1
, (12)

i.e., the evolving network maps into a Bose gas. Thus the
irreversibility and the inertness of the network are resolved
by the stationarity of the asymptotic distribution, allowing
the occupation number to follow Bose statistics in the ther-
modynamic limit t ! `.

Bose-Einstein condensation.—The solutions (5), (6),
and (9) exist only when there is a m that satisfies Eq. (10).
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However, I�b, m� defined in (10) takes its maximum at
m � 0, thus when I�b, 0� , 1 for a given b and g�e�,
Eq. (10) has no solution. The absence of a solution is a
well-known signature of Bose-Einstein condensation [7],
indicating that a finite n0�b� fraction of particles conden-
sate on the lowest energy level. Indeed, due to mass con-
servation at time t, we have t energy levels populated by
2mt particles, i.e.,

2mt �
tX

t0�1

k�et0 , t, t0� � mt 1 mtI�b, m� . (13)

When I�b, 0� , 1, Eq. (13) has to be replaced with

2mt � mt 1 mtI�b, m� 1 n0�b� , (14)

where n0�b� is given by [7]

n0�b�
mt

� 1 2 I�b, 0� . (15)

The occupancy of the lowest energy level corresponds to
the number of links the node with the largest fitness has.
Thus the emergence of a nonzero n0�b�, a signature of
Bose-Einstein condensation in quantum gases, represents
a “winner-takes-all” phenomenon for networks, the fittest
node acquiring a finite fraction of the links, independent
of the size of the network.

The mapping to a Bose gas and the possibility of Bose-
Einstein condensation in random networks predict the
existence of three distinct phases characterizing the dy-
namical properties of evolving networks: (a) a scale-free
phase, (b) a fit-get-rich phase, and (c) a Bose-Einstein
condensate. Next we discuss each of these possible phases
separately.

(a) Scale-free phase.—When all nodes have the same
fitness, i.e., r�h� � d�h 2 1�, �g�e� � d�e��, the model
reduces to the scale-free model [9], introduced to account
for the power-law connectivity distribution observed in di-
verse systems, such as the www [5,10], coauthorship net-
works [11], Internet [12], or citation networks [3]. The
model describes a “first-mover-wins” behavior, in which
the oldest nodes acquire most links. Indeed, (9) predicts
that f�e� � 1�2; i.e., according to (5) all nodes increase
their connectivity as t1�2, the older nodes with smaller
ti having larger ki . However, the oldest and “richest”
node is not an absolute winner, since its share of links,
kmax�t���mt�, decays to zero as t21�2 in the thermody-
namic limit. Thus a continuous hierarchy of large nodes
coexists, such that the degree distribution P�k�, giving the
probability to have a node with k links, follows a power
law P�k� � k23 [9,13]. Rewiring, aging, and other local
processes can modify the scaling exponents or introduce
exponential cutoffs in P�k� [10,13–15] while leaving the
thermodynamic character of the phase unchanged.

(b) Fit-get-rich phase.—This phase emerges in systems
for which nodes have different fitnesses and Eq. (10) has
a solution [i.e., I�b, m� � 1]. Equation (5) indicates that
5634
each node increases its connectivity in time, but the dy-
namic exponent is larger for nodes with higher fitness [8].
This allows fitter nodes to join the system at a later time
and to surpass the less fit but older nodes by acquiring
links at higher rates [4]. Consequently, this phase describes
a “fit-get-rich” phenomenon, in which, with time, the fit-
ter prevails. But, while there is a clear winner, similar to
the scale-free phase the fittest node’s share of all links de-
creases to zero in the thermodynamic limit. Indeed, since
f�e� , 1, the relative connectivity of the fittest node de-
creases as k�emin, t���mt� � tf�emin�21. This competition
again leads to the emergence of a hierarchy of a few large
“hubs” accompanied by many less connected nodes, P�k�
following P�k� � k2g , where g can be calculated analyti-
cally if r�h� is known [8].

(c) Bose-Einstein condensate.—Bose-Einstein conden-
sation appears when (10) has no solution, at which point
(5), (9), and (10) break down. In the competition for links
the node with the largest fitness emerges as a clear winner,
a finite fraction of particles [n0�b�] landing on this en-
ergy level. Thus BE condensation predicts a real winner-
takes-all phenomenon, in which the fittest node is not only
the largest but, despite the continuous emergence of new
nodes that compete for links, it also always acquires a fi-
nite fraction of links [Eq. (15)].

To demonstrate the existence of a phase transition from
the FGR phase to a BE condensate, we assume that the
energy (fitness) distribution follows

g�e� � Ceu , (16)

where u is a free parameter and the energies are chosen
from e [ �0, emax�, the normalization giving C � �u 1

1��eu11
max . For this class of distributions the condition for a

Bose condensation is

u 1 1
�bemax�u11

Z bemax

bemin�t�
dx

xu

ex 2 1
, 1 , (17)

where emin�t� corresponds to the lowest energy (fittest)
node present in the system at time t. Extending the limits
of integration to zero and infinity, we find the lower bound
for the critical temperature TBE � 1�bBE

TBE . emax�z �u 1 1�G�u 1 2��21��u11�. (18)

We simulated numerically the discrete network model
described above, using the energy distribution (16). The
chemical potential m, measured numerically, indicates
a sharp transition from a positive to a negative value
(Fig. 2a), corresponding to the predicted phase transition
between the BE and the FGR phases. The difference
between the two phases is seen in the relative occupa-
tion number of the most connected node for different
temperatures (Fig. 2b). We find that the ratio kmax�t��mt
is independent of time in the BE phase, indicating that
the largest node maintains a finite fraction of the total
number of links even as the network continues to expand,
a signature of BE condensation. In contrast, for T . TBE,
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FIG. 2. Numerical evidence for Bose-Einstein condensation
in a network model. (a) By choosing the energies from the
distribution (16) with emax � 1, we calculated the chemical
potential m numerically as the network evolved in time, us-
ing (8), plotting jmj on a logarithmic scale. The temperature
at which m changes sign corresponds to the sharp drop in jmj,
and identifies the critical temperature TBE for Bose-Einstein
condensation. The data are shown for u � 1 and for differ-
ent times (i.e., system sizes) t � 103 (continuous line), 104

(dashed line), and 105 (long-dashed line), averaged over 500,
100, and 30 runs, respectively. The inset shows the chemical
potential for different values of the exponent u in (16), i.e.,
u � 0.5, 1.0, 2.0, indicating the u dependence of TBE. (b) Frac-
tion of the total number of links connected to the most con-
nected (“winner”) node, kmax��mt�, plotted as a function of
T , shown for m � 2 and u � 1. The three curves recorded
at t � 103, 104, 105 indicate the difference between the two
phases: in the BE phase (left) the fittest node maintains a finite
fraction of links even as the system expands, while in the FGR
phase (right) the fraction of links connected to the most con-
nected node decreases with time. The inset shows the �u, TBE�
phase diagram, the continuous line corresponding to the lower
bound predicted by Eq. (18), while the symbols represent the
numerically measured TBE as indicated by the position of the
peaks in inset (a).

the most connected node gradually loses its share of
links, kmax�t��mt decreasing continuously with time. The
numerically determined phase diagram (Fig. 2b) confirms
that the analytical prediction (18) offers a lower bound
for TBE.
Since real networks have a T independent r�h� fit-
ness distribution, whether they are in the BE or the FGR
phase is independent of T . Indeed, for example, choos-
ing r�h� � �l 1 1� �1 2 h�l the network undergoes a
BE condensation for l . lBE � 1, and T vanishes from
all topologically relevant quantities. Thus T plays the role
of a simple control parameter in the model, allowing one
to tune it across the transition from the FGR to the BE
phase. The presence of TBE in the numerically studied
model (Fig. 2) is rooted in our technically simpler choice
of defining g�e� to be independent of T . However, as the
inset in Fig. 2b shows, by changing u the phase transition
emerges for fixed T as well, thus T is not necessary for
such a transition [16].
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