2 The Method of Lagrange Multipliers

A well-known method for solving constrained optimization problems is the method
of Lagrange multipliers. The idea behind this method is to reduce constrained opti-
mization to unconstrained optimization, and to take the (functional) constraints into
account by augmenting the objective function with a weighted sum of them. To this
end, define the Lagrangian associated with (1.1) as

L(x,A) = f(x) —AT(h(x) — b), (2.1)

where A € R™ is a vector of Lagrange multipliers.

2.1 Lagrangian Sufficiency

The following result provides a condition under which minimizing the Lagrangian,
subject only to the regional constraints, yields a solution to the original constrained
problem. The result is easy to prove, yet extremely useful in practice.

THEOREM 2.1 (Lagrangian Sufficiency Theorem). Let x € X and A € R™ such that
L(x,A) =inf, ex L(x/,A) and h(x) =b. Then x is an optimal solution of (1.1).

Proof. We have that

min f(x') = min[f(x’) = AT (h(x') — b)]
x'eX(b) x'eX(b)

> min[f(x') —AT(h(x') — b)]
x’'eX

=f(x) —AT(h(x) = b) = f(x).

Equality in the first line holds because h(x’) — b = 0 when x’ € X(b). The inequality
on the second line holds because the minimum is taken over a larger set. In the third
line we finally use that x minimizes [ and that h(x) = b. O

Two remarks are in order. First, a vector A of Lagrange multipliers satisfying the
conditions of the theorem is not guaranteed to exist in general, but it does exist for a
large class of problems. Second, the theorem appears to be useful mainly for showing
that a given solution x is optimal. In certain cases, however, it can also be used to find
an optimal solution. Our general strategy in these cases will be to minimize [ (x,A) for
all values of A, in order to obtain a minimizer x*(A) that depends on A, and then find
A* such that x*(A\*) satisfies the constraints.
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2.2 Using Lagrangian Sufficiency

We begin by applying Theorem 2.1 to a concrete example.
ExAMPLE 2.2. Assume that we want to

minimize X7 — X — 2X3
subject to x; +x2+x3 =5

x5 +x3 =4.
The Lagrangian of this problem is

Lx,A) =x1 —%x2 — 2x3 — A (X1 + X2 +x3 —5) — A2 (x] + x5 —4)
= ((1 —)\1)X1 —7\2X%> + ((—1 —}\1)7(2 —7\2X%> + <(—2—7\1)X3> + 5A71 +4A;.

For a given value of A, we can minimize [(x,A) by independently minimizing the
terms in x;, X2, and x3, and we will only be interested in values of A for which the
minimum is finite.

The term (—2 — Aq)x3 does not have a finite minimum unless A; = —2. The terms
in x; and x; then have a finite minimum only if A, < 0, in which case an optimum
occurs when

oL

— =1 —}\1 —27\27(] :3—27\27(] =0 and
6x1

oL

— =1 —}\1 —27\27(2 =1 —27\2)(2 :O,
'c)xz

i.e., when x; = 3/(2A;) and x, = 1/(2A;). The optimum is indeed a minimum, because

2L 9L
j_CL — aX1a‘X] aX]aX2 — ZAZ O
2 2
9°L 9L 0 _27\2

aX2aX] aXZaX2

is positive semidefinite when A, < 0.
Let Y be the set of values of A such that L(x,A) has a finite minimum, i.e.,

Y=AeR*: A\ =—2,A\, < 0L

For every A € Y, the unique optimum of L(x, A) occurs at x*(A) = (3/(2A2),1/(2A,),x3)7,
and we need to find A € Y such that x*(A) is feasible to be able to apply Theorem 2.1.

Therefore,
1

N
and thus A, = —4/5/8. We can now use Theorem 2.1 to conclude that the minimization
problem has an optimal solution at x; = —31/2/5, x, = —+/2/5,and x3 =5—x71—x, =

54 4./2/5.
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Let us formalize the strategy we have used to find x and A satisfying the conditions
of Theorem 2.1 for a more general problem. To

minimize f(x) subject to h(x) < b, x € X (2.2)

we proceed as follows:

1. Introduce a vector z of slack variables to obtain the equivalent problem
minimize f(x) subject to h(x) +z=b,x € X, z > 0.

2. Compute the Lagrangian L(x,z,A) = f(x) —AT(h(x) +z—Db).
3. Define the set
Y={Ae R™:inf ex >0 L(X,2,A) > —00}.

4. For each A € Y, minimize [(x,z,A) subject only to the regional constraints, i.e.,
find x*(A), z*(A) satisfying

I—(X*O\))Z* (}\))}\) = ianGX,z>O L(X) Z>)\)' (23)

5. Find A* € Y such that (x*(A*),z*(A*)) is feasible, i.e., such that x*(A*) € X,
z*(A*) > 0, and h(x*(A*)) + z*(A*) = b. By Theorem 2.1, x*(A*) is optimal
for (2.2).

2.3 Complementary Slackness

It is worth pointing out a property known as complementary slackness, which follows
directly from (2.3): for every A€ Yand i=1,...,m,

(z"(A)); #0 implies A; =0 and
Ai Z0 implies (z"(A)); = 0.

Indeed, if the conditions were violated for some i, then the value of the Lagrangian
could be reduced by reducing (z*(A));, while maintaining that (z*(A)); > 0. This
would contradict (2.3). Further note that A € Y requires for each i = 1,...,m either
that A; < 0 or that A; > 0, depending on the sign of b;. In the case where where A; < 0,
we for example get that

(h(x*(A*))); < by implies A7 =0 and
A7 <0 implies (h(x*(A*))); = b;.

Slack in the corresponding inequalities (h(x*(A*))); < b; and A} < 0 has to be comple-
mentary, in the sense that it cannot occur simultaneously in both of them.
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ExaMPLE 2.3. Consider the problem to

minimize X; — 3X2
subject to x§+x% <4
X1+ X2 < 2.

By adding slack variables, we obtain the following equivalent problem:

minimize X7 — 3%y

subject to x§ + x5 +z; =4
X1+x2+2z, =2
z1 20,z 2 0.

The Lagrangian of this problem is

L(x,z,A) =%1 —3x2 — M (X3 +%x3 +21 —4) = A (x1 +x2 + 22 —2)
= <(1 —)\2)7(1 —}\1X%> + ((—3 —}\z)Xz —)\ﬁé) —ANz7 — A2z +4A1 + 2,0,

Since z; > 0 and z; > 0, the terms —A;z; and —A,z; have a finite minimum only if
A1 <0 and A; < 0. In addition, the complementary slackness conditions A1z; =0 and
A2z = 0 must hold at the optimum.

Minimizing L(x,z,A) in x; and x; yields

L
a— =1 —}\2—2)\]7(,] =0 and
aX1
oL
~ :—3—7\2—27\17(2 :O,
aXZ

and we indeed obtain a minimum, because

2L 9L
j_CL — aX]aX] aX]aXZ — ZA] O
2 2
o°L 9°L 0 _2)\]

0Xx20%X1 0Xx20%X2

is positive semidefinite when A; < 0.

Setting A1 = 0 leads to inconsistent values for A,, so we must have A\; < 0, and,
by complementary slackness, z; = 0. Also by complementary slackness, there are now
two more cases to consider: the one where A; < 0 and z, = 0, and the one where
A2 = 0. The former case leads to a contradiction, the latter to the unique minimum at

X1 = —+/2/5 and x; = 34/2/5.



