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1 Show that the optimization problem to

maximize −2x21 − x22 + x1x2 + 8x1 + 3x2

subject to 3x1 + x2 = 10

has an optimal solution at (x1, x2) = (69/28, 73/28).

2 Suppose that f and h are continuously differentiable on Rn, and that there exist unique
functions x∗ : Rm → Rn and λ∗ : Rm → Rm such that for each b ∈ Rm, h(x∗(b)) = b,
λ∗(b) 6 0 and f(x∗(b)) = φ(b) = inf{f(x) − λ∗(b)T (h(x) − b) : x ∈ Rn}. Show that if x∗ and λ∗

are continuously differentiable, then
∂φ

∂bi
(b) = λ∗i (b).

To this end, show that

∂φ(b)

∂bi
=

n∑
j=1

(
∂f

∂xj
(x∗(b)) − λ∗(b)T

∂h

∂xj
(x∗(b))

)
∂x∗j
∂bi

(b)

− (h(x∗(b)) − b)
∂λ∗(b)T

∂bi
+ λ∗(b)T

∂b

∂bi
,

and argue that the first two terms on the right-hand side are zero.

3 Find an optimal solution of the problem to

maximize 2 tan−1 x1 + x2

subject to x1 + x2 6 b1

− log x2 6 b2

x1, x2 > 0 ,

where b1 and b2 are constants such that b1−e−b2 > 0. You may want to distinguish the cases
in which the Lagrange multiplier for the second constraint is equal to 0 and greater than 0,
respectively.

4 Show that the dual of the dual of a linear program is equivalent to the primal.

5 Let A ∈ Rm×n and b ∈ Rm, and consider the linear programs

max { 0Tx : Ax = b, x > 0 } and (1)

min { yTb : yTA > 0T }. (2)

(a) Show that (2) is the dual of (1).

(b) Show that (1) is feasible if and only if (2) is bounded.

(c) Prove Farkas’ Lemma, which states that exactly one of the following is true:

1. There exists x ∈ Rn such that Ax = b and x > 0.

2. There exists y ∈ Rm such that yTA > 0 and yTb < 0.



6 Show that adding slack variables to a linear program does not change the extreme points of
the feasible set, i.e., that x∗ ∈ Rn is an extreme point of {x ∈ Rn : x > 0,Ax 6 b} if and only if
for some z∗ ∈ Rm,

(
x∗

z∗

)
is an extreme point of {

(
x
z

)
∈ Rn+m :

(
x
z

)
> 0,Ax+ z = b}.

7 Show that a linear program that is feasible and bounded has an optimal solution that is a
BFS. You may want to consider an optimal solution that is not basic and show that there must
exist an optimal solution with strictly fewer non-zero entries.

8 Consider the problem to
maximize x1 + x2

subject to 2x1 + x2 6 4

x1 + 2x2 6 4

x1 − x2 6 1

x1, x2 > 0.

(a) Solve the problem graphically in the plane.

(b) Introduce slack variables x3, x4, and x5 and write the problem in equality form. How many
basic solutions are there? Determine the value of x = (x1, . . . , x5)

T and of the objective
function at each of the basic solutions. Which of the basic solutions are feasible? Are all
basic solutions non-degenerate?

(c) Write down the dual problem in equality form using slack variables λ4 and λ5, and
determine the value of λ = (λ1, λ2, λ3, λ4, λ5) and of the objective function at each of
the basic solutions of the dual. Which of these basic solutions are feasible?

(d) Write down the complementary slackness conditions for the problem, and show that for
each basic solution of the primal there is exactly one basic solution of the dual such that
the two have the same value and satisfy complementary slackness. How many of these
pairs are feasible for both primal and dual?

(e) Solve the problem using the simplex method. Start from the basic feasible solution where
x1 = x2 = 0, and try both choices for a variable to enter into the basis. How are the
entries in the last row of the various tableaus related to the appropriate basic solutions
of the dual?

9 Use the two-phase simplex method to show that the linear program

minimize 4x1 + 4x2 + x3

subject to x1 + x2 + x3 6 2

2x1 + x2 6 3

2x1 + x2 + 3x3 > 3

x1, x2, x3 > 0

has an optimal solution at x = (0, 0, 1).
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10 Consider the integer program (IP)

maximize x1 + 2x2

subject to −3x1 + 4x2 6 4

3x1 + 2x2 6 11

2x1 − x2 6 5

x1, x2 > 0, x1, x2 ∈ Z.

(a) Use the simplex method to solve the LP relaxation of the IP and verify that the final
tableau looks as follows:

x1 x2 z1 z2 z3

0 1 1
6

1
6 0 5

2

1 0 −1
9

2
9 0 2

0 0 7
18 − 5

18 1 7
2

0 0 −2
9 −5

9 0 −7

(b) Explain why the optimal solution of the IP must satisfy x2 6 2.

(c) Use the cutting plane method to solve the IP.

11 A Hamiltonian cycle of a graph is a cycle that visits every node. The directed Hamiltonian
cycle problem asks whether a given directed graph has a Hamiltonian cycle.

(a) Show that this problem is in NP.

(b) Give a reduction from the Boolean satisfiability problem to show that the problem is also
NP-hard. For each variable of a given Boolean formula, arrange an appropriate number of
nodes from left to right, and connect them in such a way that there are exactly two paths
that visit all of them, one from left to right and one from right to left, corresponding to
setting the variable to true or false. Now represent each clause by one node, and connect
this node to the chain of nodes of every variable contained in the clause, in such a way
that the node can be visited while traversing the nodes for a particular variable if and
only if the variable has been set in a way that satisfies the clause.

(c) Show that the traveling salesman problem is NP-hard, by observing that the undirected
Hamiltonian cycle problem is a special case of it and reducing the directed Hamiltonian
cycle problem to the undirected one. The key element of the reduction is to replace every
node in a directed graph by three nodes in an undirected one, such that there is a direct
correspondence between paths in the two graphs.
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