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Introduction Upper Bounds Lower Bound Open Problems

Choosing from a Tournament

I Set A = {1, 2, . . . ,m} of alternatives
I Tournament T ∈ T (A): a complete, irreflexive,

asymmetric relation on A
I Directed edge (a, b) means that a “beats” b
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I For example arises from majority voting over pairs of
alternatives (with an odd number of voters, linear preferences)

I Tournament solution f : T (A)→ 2A that singles out good
alternatives in the presence of cycles

I Copeland solution: alternatives with maximum (out-)degree
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Introduction Upper Bounds Lower Bound Open Problems

Voting Trees

I A procedure for choosing from a tournament
I Voting tree Γ on A : Binary tree with elements of A at the leaves
I Given tournament T , label each internal node with the label of

its children that is better according to T
I Label at the root is the winner, denoted Γ(T)

I Question: Which solutions can be implemented by voting trees?
I Γ implements f if for any T ∈ T (A), Γ(T) ∈ f(T)

I Copeland solution can be implemented if and only if m ≤ 7
(Moulin, 1986; Srivastava and Trick, 1996)

I Question: Can the Copeland solution be approximated?
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Two Models

I Deterministic: Voting tree Γ on A provides approximation ratio α
if for all T ∈ T (A),

sΓ(T)

maxi∈A si(T)
≥ α,

where si is the degree (or score) of i

I Randomized: Probability distribution ∆ over voting trees on A
I provides approximation ratio α if for all T ∈ T (A),

EΓ∼∆[sΓ(T)]

maxi∈A si(T)
≥ α

I is admissible if its support contains only surjective trees
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Upper Bounds by Composition Consistency

I Theorem: No voting tree provides an approximation ratio better
than 3

4 + O( 1
m ).

I Theorem: No distribution over voting trees provides an
approximation ratio better than 5

6 + O( 1
m ).

I C ⊆ A is a component of T ∈ T (A) if for all
i, j ∈ C, k ∈ A \ C, iTk if and only if jTk

1
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5

I Lemma (Moulin, 1986): Consider T ,T ′ ∈ T (A) that differ only
inside a component C. Then for any voting tree Γ on A ,

(i) Γ(T) ∈ C if and only if Γ(T ′) ∈ C
(ii) Γ(T) ∈ A \ C implies Γ(T) = Γ(T ′)
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Introduction Upper Bounds Lower Bound Open Problems

Proof Sketch

I Choose m = 3k for k odd
I T : three-cycle of regular

components of size k
I sΓ(T) = k + k−1

2
I W.l.o.g., Γ(T) ∈ C1

I Now define T ′ by making C2

transitive

I By the Lemma, Γ(T) = Γ(T ′)
I maxi si = k + (k − 1)

C1

C2C3

I Randomized upper bound: use Yao’s principle
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A Randomized Lower Bound

I Theorem: There exists an admissible randomization over voting
trees of polynomial size with an approximation ratio of 1

2 −O( 1
m ).

I Trivial for non-admissible randomizations, random alternative
has expected degree m−1

2
I Proof uses voting caterpillars
I 1-caterpillar: a leaf
I k -caterpillar: a binary tree, children of the root are a

(k − 1)-caterpillar and a leaf
I k -RC: leafs chosen uniformly i.i.d.
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Proof Outline

I k -RC is close to an admissible distribution
I Equivalent to a random walk on the tournament

I move from i to better alternative j with probability pij = 1
m

I stay put with probability pii = si+1
m

I Stationary distribution π such that πi =
∑

j πjpji

I Yields expected degree
∑

i∈A πisi ≥
m−1

2
I Fast convergence:

I Look at reversibilization M of the transition matrix
I Fill (1991): 4‖π(k) − π‖2 ≤ m(β1(M))k , where β1(M) is the

second largest eigenvalue of M
I Sinclair and Jerrum (1989): 1 − 2Φ ≤ β1(A) ≤ 1 − Φ2

2 ,
where Φ is the conductance of M
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The Analysis is Tight

I A ′ ∪ A ′′ regular
I |A ′′| = ε(m − 1)

A ′A ′′

a

I πa =
∑

j:aTj πj

m−sa−1 ≤
1

m−sa−1 ≤
1

ε(m−1)

I
∑

i πisi ≤
1

ε(m−1)
(m − 1) +

ε(m−1)−1
ε(m−1)

·
(

m−1
2 + 1

)
≤ m−1

2 + 1
ε + 1

I This counterexample is generic, so we either get 1
2 w.h.p. or

something better in expectation
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What We (Don’t) Know

I Permutation tree: balanced tree, every alternative at one leaf
I Trivial (deterministic) lower bound of Θ( log m

m )

I Large gap between this and the upper bound of 3
4

I Balanced trees of height (log m) + 1 do not help
I Composition of permutation trees cannot do better than 1

2

I Randomized model: gap between 1
2 and 5

6
I Randomized balanced trees “oscillate”, don’t provide any bound
I Higher-order caterpillars also oscillate
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Thank you!
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