
Payment Rules for Combinatorial Auctions via
Structural Support Vector Machines

Felix Fischer
Harvard University

joint work with Paul Dütting (EPFL), Petch Jirapinyo (Harvard),
John Lai (Harvard), Ben Lubin (BU), and David C. Parkes (Harvard)

September 7, 2011



Combinatorial Auctions

I n agents
I m items
I Bundles Y = {0, 1}m

I Valuation profiles X = R2m×n

I Allocation rule gi : X → Y
I Payment rule ti : X × Y → R
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I Optimal allocation: maximize
∑

i xi[yi] such that yi ∩ yj = ∅

I Strategyproofness:

xi[gi(x)] − ti(x, gi(x)) ≥ xi[gi(x′i , x−i)] − ti(x′i , x−i , gi(x′i , x−1))
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Problem Statement

I Elicitation of valuations and computation of optimal allocation
are costly, often prohibitively so

I Canonical strategyproof mechanism: VCG
I depends on ability to find efficient allocation
I other problems: collusion, small or non-monotonic revenue

I Alternative solutions hard to come by

I Our approach: take allocation rule g as given, use to generate
input for a learning algorithm

I Implicitly learns payment rule t that makes g “maximally
incentive compatible” (we will see in what sense)
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Outline

Combinatorial Auctions and Margin-Based Learning

Learning a Payment Rule

Summary and Open Problems
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CAs and Margin-Based Learning Learning a Payment Rule Conclusion

Learning What We Already Know

I By symmetry concentrate on agent 1, consider g = g1 and t = t1
I Assume g is given, as well as a distribution P(X) on X
I Together they induce a distribution P(X ,Y) on X × Y

I Sample set of training examples from P(X ,Y) and learn an
allocation function h : X → Y

I We know g, so we are not actually interested in h
I Rather: employ a margin-based learning method, infer t from

the margin
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CAs and Margin-Based Learning Learning a Payment Rule Conclusion

Learning How to Allocate

I Single-item case corresponds to an ordinary binary classifier:
allocate the item or not

−

−
−

−

−

+
++

+

I In general: one class for each bundle that could be allocated
I Learn a discriminant function f : X × Y → R that rates bundles
I Define h to choose the most appropriate bundle:

h(x) = arg max
y∈Y(x−1)

f(x, y)
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CAs and Margin-Based Learning Learning a Payment Rule Conclusion

The Discriminant Function

I Impose additional structure on f :

fw(x, y) = w1x1[y] + wT
−1ψ(x−1, y)

I w = (w1,w−1) ∈ RM+1 is a parameter vector to be learned
I ψ(x−1, y) ∈ RM is a feature vector derived from x−1 and y

I Linear in RM , but can be very expressive in X

+ − +
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CAs and Margin-Based Learning Learning a Payment Rule Conclusion

The Payment Rule

I Ensure w1 > 0 and let

tw(x, y) = −

(
w−1

w1

)T

ψ(x−1, y)

I agent-independent
I hw predicts the utility-maximizing bundle:

hw(x) = arg max
y∈Y(x−1)

fw(x, y) = arg max
y∈Y(x−1)

w1x1[y] + wT
−1ψ(x−1, y)

= arg max
y∈Y(x−1)

w1x1[y] + wT
−1

(
−

w1

w−1
tw(x, y)

)
= arg max

y∈Y(x−1)
(x1[y] − tw(x, y))

I Can ensure by translation that wT
−1ψ(x−1, 0) = 0, i.e., that

payment for empty bundle is zero
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CAs and Margin-Based Learning Learning a Payment Rule Conclusion

Truthfulness and Regret

I Looks like the characterization of a strategyproof mechanism,
but hw might not be feasible

I Also recall that we want to allocate according to g, not hw

I Ex-post regret (for bidding truthfully): maximum gain in utility by
bidding differently

Lemma: The ex-post regret for bidding truthfully in (g, tw) is
1

w1

(
maxy′∈Y(x−1)fw(x, y′) − fw(x, g(x))

)
.

Theorem: If hw is exact, then (g, tw) is strategyproof.

I But: hw will not always be exact, we know it cannot be if g is not
monotonic
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CAs and Margin-Based Learning Learning a Payment Rule Conclusion

Regret and Generalization Error

I Generalization error of a classifier hw ∈ Hψ:

RP(hw) =

∫
X×Y

∆x(y, hw(x)) dP(x, y)

where ∆x(y, y′) = 1
w1

(fw(x, y′) − fw(x, y))

Theorem: If hw minimizes generalization error then tw
minimizes expected ex-post regret for truthful bidding.

I Amount a random agent can gain by lying when all others tell
the truth, for valuations drawn from P(X)

I Different from (approximate) ex-ante and ex-interim equilibrium,
rather provides an upper bound on the expected ex-interim gain
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CAs and Margin-Based Learning Learning a Payment Rule Conclusion

Support Vector Machines?

I Learn a discriminant function that maximizes the margin
I Binary setting: minimize generalization error in the limit

I Version with structured/multi-class output due to Joachims et al.
I Training by solving a quadratic optimization problem with linear

constraints, can be done efficiently under certain conditions

I Training requires computation of inner products in the (high- or
infinite-dimensional) feature space RM

I Kernel trick: choose ψ carefully to ensure they can be computed
efficiently from vectors in the original space

I Linear classification in RM without any explicit calculations in RM
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CAs and Margin-Based Learning Learning a Payment Rule Conclusion

Summary

I Design of payment rules using margin-based classifier, given
oracle access to valuation distribution and allocation rule

I Exact classifier yields strategyproof payment rule, minimization
of error implies minimization of expected ex-post regret

I Experiments for 5 items, 2 to 6 agents, 200 training examples
I 5 items, 2 to 6 agents, 200 training examples
I ψ(x−1, y) = φ([x2 \ y, . . . , xn \ y])
I φ corresponding to RBF kernel K(z, z′) = exp(−||z − z′||/2σ2)

accuracy average regret IR violation
single item 96% 0.2% 2%
single-minded 90% 1% 6%
multi-minded, complements 94% 0.1% 3%
multi-minded, substitutes 75% 2% 15%
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CAs and Margin-Based Learning Learning a Payment Rule Conclusion

Open Problems

I Possibly −wT
−1ψ(x−1, y) ≥ x1[y], failure of individual rationality

I tradeoff between individual rationality and strategyproofness
I both at the same time (only?) by deviation from g, e.g., by

discarding y and allocating ∅
I Training problem has Ω(|Y(x−1)|) constraints, exponential in m in

general
I only polynomially many constraints matter, a separation

oracle would suffice
I when valuations can be represented succinctly, payment

monotonicity would also suffice
I more highly structured payment rules for restricted valuations

I More clever feature maps, e.g., to allow for generalization across
different numbers of agents
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Thank you!
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