Mix and Match

Itai Ashlagi ${ }^{1}$ Felix Fischer ${ }^{2}$ Ian Kash ${ }^{2}$ Ariel Procaccia ${ }^{2}$
${ }^{1}$ Harvard Business School
${ }^{2}$ Harvard SEAS
CRCS Seminar

Kidney Exchanges

- End Stage Renal Disease: fatal unless treated with dialysis or transplantation of a kidney
- Live donation possible, studies show no long-term negative effect on donor
- But: patients might not be compatible with their potential donor (usually a relative or friend)
- Kidney exchanges enable transplantations in such cases
- Basic case: two donor-patient pairs such that each donor has desired level of compatibility with patient of respective other pair

Incentives in Kidney Exchanges

- Incentives within a single (paired) exchange controlled by conducting transplantations simultaneously
- As kidney exchanges become more prevalent, incentives of hospitals also become an issue
- Several hospitals in which patients are treated
- Each hospital has an incentive to transplant its own patients
- Ideally: one large (regional or countrywide) exchange
- But: hospitals might want to "hide" some of their patients and carry out transplantations among them

Outline

A Model of Hospitals' Incentives

Lower Bounds

Deterministic Mechanisms

Mix and Match: A 2-Efficient Randomized Mechanism

A Model of Hospitals' Incentives (Roth et al., 2007)

- Set N of agents, corresponding to hospitals
- Graph $G=(V, E)$ with $V=\biguplus_{i} V_{i}$
- Each vertex $v \in V$ corresponds to a donor-patient pair
- Edge $(u, v) \in E$ means donor of u is compatible with patient of v, and donor of v with patient of u
- Agents report subsets $V_{i}^{\prime} \subseteq V_{i}$
- Mechanism produces matching M^{\prime} of subgraph induced by $\biguplus_{i} V_{i}^{\prime}$
- Agent i adds matching \widehat{M}_{i} for hidden and unmatched vertices
- Utility of agent i is number of vertices in V_{i}^{\prime} matched in M^{\prime} and \widehat{M}_{i}

The Model \quad Lower Bounds \quad Deterministic Me Desirable Properties of Mechanisms

- Strategyproofness: no agent can gain by hiding vertices
- Approximate efficiency: mechanism is α-efficient if ratio between size of maximum cardinality matching and returned matching is at most α
- No monetary payments, for legal and ethical reasons
- "Approximate mechanism design without money" (Procaccia and Tennenholtz, 2009)

Lower Bounds

Theorem: If there are at least two agents, no deterministic strategyproof mechanism can be α-efficient for $\alpha<2$, and
no randomized strategyproof mechanism can be α-efficient for $\alpha<4 / 3$.

Lower Bounds

Theorem: If there are at least two agents, no deterministic strategyproof mechanism can be α-efficient for $\alpha<2$, and no randomized strategyproof mechanism can be α-efficient for $\alpha<4 / 3$.

Lower Bounds

Theorem: If there are at least two agents, no deterministic strategyproof mechanism can be α-efficient for $\alpha<2$, and no randomized strategyproof mechanism can be α-efficient for $\alpha<4 / 3$.

Lower Bounds

Theorem: If there are at least two agents, no deterministic strategyproof mechanism can be α-efficient for $\alpha<2$, and no randomized strategyproof mechanism can be α-efficient for $\alpha<4 / 3$.

Lower Bounds

Theorem: If there are at least two agents, no deterministic strategyproof mechanism can be α-efficient for $\alpha<2$, and no randomized strategyproof mechanism can be α-efficient for $\alpha<4 / 3$.

A Deterministic Mechanism for Two Agents

- Choose matching that has
(i) maximum cardinality on both V_{1} and V_{2} and
(ii) maximum cardinality among all matchings satisfying (i)

A Deterministic Mechanism for Two Agents

- Choose matching that has
(i) maximum cardinality on both V_{1} and V_{2} and
(ii) maximum cardinality among all matchings satisfying (i)

A Deterministic Mechanism for Two Agents

- Choose matching that has
(i) maximum cardinality on both V_{1} and V_{2} and
(ii) maximum cardinality among all matchings satisfying (i)

A Deterministic Mechanism for Two Agents

- Choose matching that has
(i) maximum cardinality on both V_{1} and V_{2} and
(ii) maximum cardinality among all matchings satisfying (i)

A Deterministic Mechanism for Two Agents

- Choose matching that has
(i) maximum cardinality on both V_{1} and V_{2} and
(ii) maximum cardinality among all matchings satisfying (i)

- Strategyproof (more on that later)
- 2-efficient, as returned matching is inclusion-maximal

A Generalization

- Choose matching that has
(i) maximum cardinality on V_{i} for all $i \in N$
(ii) maximum cardinality among all matchings satisfying (i)

A Generalization

- Choose matching that has
(i) maximum cardinality on V_{i} for all $i \in N$
(ii) maximum cardinality among all matchings satisfying (i)

A Generalization

- Choose matching that has
(i) maximum cardinality on V_{i} for all $i \in N$
(ii) maximum cardinality among all matchings satisfying (i), breaking ties serially

A Generalization

- Choose matching that has
(i) maximum cardinality on V_{i} for all $i \in N$
(ii) maximum cardinality among all matchings satisfying (i), breaking ties serially

A Better Generalization

- Fix a bipartition $\Pi=\left(\Pi_{1}, \Pi_{2}\right)$ of N
- Матснп: choose matching that has
(i) maximum cardinality on V_{i} for all $i \in N$
(ii) no edges between V_{i} and V_{j} if $i, j \in \Pi_{\ell}$ for $\ell \in\{1,2\}$
(iii) maximum cardinality among all matchings satisfying (i) and (ii), breaking ties serially

A Better Generalization

- Fix a bipartition $\Pi=\left(\Pi_{1}, \Pi_{2}\right)$ of N
- Матснп: choose matching that has
(i) maximum cardinality on V_{i} for all $i \in N$
(ii) no edges between V_{i} and V_{j} if $i, j \in \Pi_{\ell}$ for $\ell \in\{1,2\}$
(iii) maximum cardinality among all matchings satisfying (i) and (ii), breaking ties serially
- $\Pi=(\{1\},\{2\})$ yields the two-agent mechanism we saw earlier

A Better Generalization

- Fix a bipartition $\Pi=\left(\Pi_{1}, \Pi_{2}\right)$ of N
- Матснп: choose matching that has
(i) maximum cardinality on V_{i} for all $i \in N$
(ii) no edges between V_{i} and V_{j} if $i, j \in \Pi_{\ell}$ for $\ell \in\{1,2\}$
(iii) maximum cardinality among all matchings satisfying (i) and (ii), breaking ties serially
- $\Pi=(\{1\},\{2\})$ yields the two-agent mechanism we saw earlier

Theorem: For any number of agents and any bipartition Π, Матснп is strategyproof.
Proof idea: ...

Proof Idea

- Graph G, bipartition $\Pi=\left(\Pi_{1}, \Pi_{2}\right), M=$ Matchп $_{\square}(G)$
- Agent i hides vertices, $M^{\prime}=$ МАтСН $_{\boldsymbol{n}}\left(G^{\prime}\right) \cup \widehat{M}_{i}$
- $M \Delta M^{\prime}=\left(M \cup M^{\prime}\right) \backslash\left(M \cap M^{\prime}\right)$
- vertex-disjoint paths, edges alternate between M and M^{\prime}
- cycles: have even length, both M and M^{\prime} match all vertices
- argument treats paths independently
- Thus assume w.l.o.g.: $M \Delta M^{\prime}$ is a single path, not a cycle
- Arbitrarily fix a direction for this path
- start and end vertex
- (maximal) subpaths inside V_{j}, from V_{i} back to V_{i}
- edges entering and leaving V_{j}

Proof Idea

- Two cases: $\left|M_{i j}\right|>\left|M_{i j}^{\prime}\right|$ and $\left|M_{i i}\right|=\left|M_{i j}^{\prime}\right|$, we consider the first
- Both M and M^{\prime} have maximum cardinality on V_{j} for $j \neq i$ \Rightarrow every subpath inside V_{j} for $j \neq i$ has even length
\Rightarrow enters with M and leaves with M^{\prime}, or vice versa
- $M_{j k}=\emptyset$ when $j, k \in \Pi_{\ell}$ for $\ell \in\{1,2\}$
\Rightarrow path crosses bipartition whenever it enters a new set
\Rightarrow leaving V_{i} with M it returns with M^{\prime}, and vice versa
- $\left(M \Delta M^{\prime}\right) \backslash\left(M_{i i} \cup M_{i j}^{\prime}\right)$
- collection of subpaths
- all but two of them have one edge in $M_{i j}$ and one edge in $M_{i k}^{\prime}$ for some $j, k \neq i$

Proof Idea

$$
\begin{aligned}
u_{i}(M)= & 2\left|M_{i i}\right|+\sum_{j \neq i}\left|M_{i j}\right| \\
& 2\left(\left|M_{i j}^{\prime}\right|+1\right)+\sum_{j \neq i}\left|M_{i j}^{\prime}\right|-2 \\
= & 2\left|M_{i j}^{\prime}\right|+\sum_{j \neq i}\left|M_{i j}^{\prime}\right|=u_{i}\left(M^{\prime}\right)
\end{aligned}
$$

Proof Idea

$$
\begin{aligned}
& u_{i}(M)=2\left|M_{i i}\right|+\sum_{j \neq i}\left|M_{i j}\right| \\
& \text { IV } \\
& 2\left(\left|M_{i i}^{\prime}\right|+1\right)+\sum_{j \neq i}\left|M_{i j}^{\prime}\right|-2 \\
& =2\left|M_{i i}^{\prime}\right|+\sum_{j \neq i}\left|M_{i j}^{\prime}\right|=u_{i}\left(M^{\prime}\right)
\end{aligned}
$$

- by the assumption that $\left|M_{i j}\right|>\left|M_{i j}^{\prime}\right|$

Proof Idea

$$
\begin{array}{rl}
u_{i}(M)= & 2\left|M_{i i}\right|+\sum_{j \neq i}\left|M_{i j}\right| \\
\mid V & 2\left(\left|M_{i j}^{\prime}\right|+1\right)+\sum_{j \neq i}\left|M_{i j}^{\prime}\right|-2 \\
= & 2\left|M_{i j}^{\prime}\right|+\sum_{j \neq i}\left|M_{i j}^{\prime}\right|=u_{i}\left(M^{\prime}\right)
\end{array}
$$

- by the assumption that $\left|M_{i j}\right|>\left|M_{i j}^{\prime}\right|$
- since all but two subpaths in $\left(M \Delta M^{\prime}\right) \backslash\left(M_{i i} \cup M_{i j}^{\prime}\right)$ have one edge in $M_{i j}$ and one edge in $M_{j k}^{\prime}$

Proof Idea

$$
\begin{array}{rl}
u_{i}(M) & =2\left|M_{i i}\right|+\sum_{j \neq i}\left|M_{i j}\right| \\
\mid V & \mathbb{V} \\
& \geq 2\left(\left|M_{i j}^{\prime}\right|+1\right)+\sum_{j \neq i}\left|M_{i j}^{\prime}\right|-2 \\
& =2\left|M_{i j}^{\prime}\right|+\sum_{j \neq i}\left|M_{i j}^{\prime}\right|=u_{i}\left(M^{\prime}\right)
\end{array}
$$

- by the assumption that $\left|M_{i j}\right|>\left|M_{i j}^{\prime}\right|$
- since all but two subpaths in $\left(M \Delta M^{\prime}\right) \backslash\left(M_{i i} \cup M_{i j}^{\prime}\right)$ have one edge in $M_{i j}$ and one edge in $M_{j k}^{\prime}$

A Better Generalization

- Fix a bipartition $\Pi=\left(\Pi_{1}, \Pi_{2}\right)$ of N
- МАтснп: choose matching that has
(i) maximum cardinality on V_{i} for all $i \in N$
(ii) no edges between V_{i} and V_{j} if $i, j \in \Pi_{\ell}$ for $\ell \in\{1,2\}$
(iii) maximum cardinality among all matchings satisfying (i) and (ii), breaking ties serially

Theorem: For any number of agents and any bipartition Π, МАтснп can be executed in polynomial time.
Proof idea: reduction to weighted matching

A Better Generalization

- Fix a bipartition $\Pi=\left(\Pi_{1}, \Pi_{2}\right)$ of N
- Матснп: choose matching that has
(i) maximum cardinality on V_{i} for all $i \in N$
(ii) no edges between V_{i} and V_{j} if $i, j \in \Pi_{\ell}$ for $\ell \in\{1,2\}$
(iii) maximum cardinality among all matchings satisfying (i) and (ii), breaking ties serially
- Strategyproof and 2-efficient mechanism for two agents
- No finite approximation ratio for more than two agents

Mix and Match

- Mix-and-Мatch:

1. Construct random bipartition $\Pi=\left(\Pi_{1}, \Pi_{2}\right)$: for each agent flip a fair coin to determine whether he goes to Π_{1} or Π_{2}
2. Execute МАтснп

Mix and Match

- Mix-and-Мatch:

1. Construct random bipartition $\Pi=\left(\Pi_{1}, \Pi_{2}\right)$: for each agent flip a fair coin to determine whether he goes to Π_{1} or Π_{2}
2. Execute Матснп

Theorem: For any number of agents, Mix-and-Мatch is universally strategyproof and 2 -efficient in expectation.

What We (Don't) Know

	deterministic		randomized	
	lower bound	upper bound	lower bound	upper bound
two agents	2	2	4/3	2
n agents	2	∞	4/3	2

What We (Don't) Know

	deterministic		randomized	
	lower bound	upper bound	lower bound	upper bound
two agents	2	2	4/3	2
n agents	2	∞	4/3	2

What We (Don't) Know

	deterministic		randomized			
	lower bound	upper				
bound					\quad	lower
:---:	:---:	:---:	:---:			
bound	\quad	upper				
:---:						
bound						

Flip-and-Match: with probability $1 / 2$ each

- execute Mix-and-Match
- return a maximum cardinality matching

What We (Don't) Know

	deterministic		randomized					
	lower bound	upper						
bound					\quad	lower	bound	bound
:---:	:---:	:---:						
two agents	2	2						

- Possible extensions
- Stronger notion of stability: group-strategyproofness
- Longer exchange sequences

Thank you!

