Mix and Match

Itai Ashlagi¹ Felix Fischer² Ian Kash² Ariel Procaccia²

¹Harvard Business School

²Harvard SEAS

CRCS Seminar

Kidney Exchanges

- End Stage Renal Disease: fatal unless treated with dialysis or transplantation of a kidney
- Live donation possible, studies show no long-term negative effect on donor
- But: patients might not be compatible with their potential donor (usually a relative or friend)
- Kidney exchanges enable transplantations in such cases
- Basic case: two donor-patient pairs such that each donor has desired level of compatibility with patient of respective other pair

Incentives in Kidney Exchanges

- Incentives within a single (paired) exchange controlled by conducting transplantations simultaneously
- As kidney exchanges become more prevalent, incentives of hospitals also become an issue
- Several hospitals in which patients are treated
- Each hospital has an incentive to transplant its own patients
- Ideally: one large (regional or countrywide) exchange
- But: hospitals might want to "hide" some of their patients and carry out transplantations among them

Outline

A Model of Hospitals' Incentives

Lower Bounds

Deterministic Mechanisms

Mix and Match: A 2-Efficient Randomized Mechanism

A Model of Hospitals' Incentives (Roth et al., 2007)

- Set N of agents, corresponding to hospitals
- Graph G = (V, E) with $V = \biguplus_i V_i$
 - Each vertex $v \in V$ corresponds to a donor-patient pair
 - Edge (u, v) ∈ E means donor of u is compatible with patient of v, and donor of v with patient of u
- Agents report subsets $V'_i \subseteq V_i$
- Mechanism produces matching M' of subgraph induced by $\bigcup_i V'_i$
- Agent *i* adds matching \widehat{M}_i for hidden and unmatched vertices
- Utility of agent *i* is number of vertices in V'_i matched in M' and \widehat{M}_i

Desirable Properties of Mechanisms

- Strategyproofness: no agent can gain by hiding vertices
- Approximate efficiency: mechanism is α-efficient if ratio between size of maximum cardinality matching and returned matching is at most α
- No monetary payments, for legal and ethical reasons
- "Approximate mechanism design without money" (Procaccia and Tennenholtz, 2009)

Theorem: If there are at least two agents,

no deterministic strategyproof mechanism can be $\alpha\text{-efficient}$ for α < 2, and

Theorem: If there are at least two agents,

no deterministic strategyproof mechanism can be $\alpha\text{-efficient}$ for α < 2, and

Theorem: If there are at least two agents,

no deterministic strategyproof mechanism can be α -efficient for α < 2, and

Theorem: If there are at least two agents,

no deterministic strategyproof mechanism can be $\alpha\text{-efficient}$ for α < 2, and

Theorem: If there are at least two agents,

no deterministic strategyproof mechanism can be $\alpha\text{-efficient}$ for α < 2, and

- (i) maximum cardinality on both V_1 and V_2 and
- (ii) maximum cardinality among all matchings satisfying (i)

- (i) maximum cardinality on both V_1 and V_2 and
- (ii) maximum cardinality among all matchings satisfying (i)

- (i) maximum cardinality on both V_1 and V_2 and
- (ii) maximum cardinality among all matchings satisfying (i)

- (i) maximum cardinality on both V_1 and V_2 and
- (ii) maximum cardinality among all matchings satisfying (i)

Choose matching that has

- (i) maximum cardinality on both V_1 and V_2 and
- (ii) maximum cardinality among all matchings satisfying (i)

Strategyproof (more on that later)

2-efficient, as returned matching is inclusion-maximal

- Choose matching that has
 - (i) maximum cardinality on V_i for all $i \in N$
 - (ii) maximum cardinality among all matchings satisfying (i)

- Choose matching that has
 - (i) maximum cardinality on V_i for all $i \in N$
 - (ii) maximum cardinality among all matchings satisfying (i)

- Choose matching that has
 - (i) maximum cardinality on V_i for all $i \in N$
 - (ii) maximum cardinality among all matchings satisfying (i), breaking ties serially

- Choose matching that has
 - (i) maximum cardinality on V_i for all $i \in N$
 - (ii) maximum cardinality among all matchings satisfying (i), breaking ties serially

- Fix a bipartition $\Pi = (\Pi_1, \Pi_2)$ of N
- Матснп: choose matching that has
 - (i) maximum cardinality on V_i for all $i \in N$
 - (ii) no edges between V_i and V_j if $i, j \in \Pi_{\ell}$ for $\ell \in \{1, 2\}$
 - (iii) maximum cardinality among all matchings satisfying (i) and (ii), breaking ties serially

- Fix a bipartition $\Pi = (\Pi_1, \Pi_2)$ of N
- Матснп: choose matching that has
 - (i) maximum cardinality on V_i for all $i \in N$
 - (ii) no edges between V_i and V_j if $i, j \in \Pi_{\ell}$ for $\ell \in \{1, 2\}$
 - (iii) maximum cardinality among all matchings satisfying (i) and (ii), breaking ties serially
- $\Pi = (\{1\}, \{2\})$ yields the two-agent mechanism we saw earlier

- Fix a bipartition $\Pi = (\Pi_1, \Pi_2)$ of N
- Матснп: choose matching that has
 - (i) maximum cardinality on V_i for all $i \in N$
 - (ii) no edges between V_i and V_j if $i, j \in \Pi_{\ell}$ for $\ell \in \{1, 2\}$
 - (iii) maximum cardinality among all matchings satisfying (i) and (ii), breaking ties serially
- $\Pi = (\{1\}, \{2\})$ yields the two-agent mechanism we saw earlier

Theorem: For any number of agents and any bipartition Π , Match_{Π} is strategyproof.

Proof idea: ...

- Graph G, bipartition $\Pi = (\Pi_1, \Pi_2), M = Match_{\Pi}(G)$
- ► Agent *i* hides vertices, $M' = M_{ATCH_{\Pi}}(G') \cup \widehat{M}_i$
- $M\Delta M' = (M \cup M') \setminus (M \cap M')$
 - ▶ vertex-disjoint paths, edges alternate between M and M'
 - cycles: have even length, both M and M' match all vertices
 - argument treats paths independently
- Thus assume w.l.o.g.: $M\Delta M'$ is a single path, not a cycle
- Arbitrarily fix a direction for this path
 - start and end vertex
 - (maximal) subpaths inside V_i , from V_i back to V_i
 - edges entering and leaving V_j

- ► Two cases: $|M_{ii}| > |M'_{ii}|$ and $|M_{ii}| = |M'_{ii}|$, we consider the first
- Both *M* and *M'* have maximum cardinality on V_j for j ≠ i ⇒ every subpath inside V_j for j ≠ i has even length ⇒ enters with *M* and leaves with *M'*, or vice versa
- *M*_{jk} = Ø when j, k ∈ Π_ℓ for ℓ ∈ {1, 2}
 ⇒ path crosses bipartition whenever it enters a new set
 ⇒ leaving V_i with *M* it returns with *M*', and vice versa
- $(M\Delta M') \setminus (M_{ii} \cup M'_{ii})$
 - collection of subpaths
 - all but two of them have one edge in M_{ij} and one edge in M'_{ik} for some j, k ≠ i

$$u_i(M) = 2|M_{ii}| + \sum_{j\neq i} |M_{ij}|$$

$$2(|M'_{ii}|+1) + \sum_{j \neq i} |M'_{ij}| - 2$$

= $2|M'_{ii}| + \sum_{j \neq i} |M'_{ij}| = u_i(M')$

Mix and Match

Proof Idea

$$u_{i}(M) = 2|M_{ii}| + \sum_{j \neq i} |M_{ij}|$$

$$V$$

$$2(|M'_{ii}| + 1) + \sum_{j \neq i} |M'_{ij}| - 2$$

$$= 2|M'_{ii}| + \sum_{j \neq i} |M'_{ij}| = u_{i}(M')$$

• by the assumption that $|M_{ii}| > |M'_{ii}|$

$$u_{i}(M) = 2|M_{ii}| + \sum_{j \neq i} |M_{ij}|$$

$$|\vee \qquad |\vee$$

$$2(|M'_{ii}| + 1) + \sum_{j \neq i} |M'_{ij}| - 2$$

$$= 2|M'_{ij}| + \sum_{j \neq i} |M'_{ij}| = u_{i}(M')$$

- by the assumption that $|M_{ii}| > |M'_{ii}|$
- since all but two subpaths in (M△M') \ (M_{ii} ∪ M'_{ii}) have one edge in M_{ij} and one edge in M'_{ik}

$$u_{i}(M) = 2|M_{ii}| + \sum_{j \neq i} |M_{ij}|$$

$$|\vee \qquad |\vee$$

$$\geq 2(|M'_{ii}| + 1) + \sum_{j \neq i} |M'_{ij}| - 2$$

$$= 2|M'_{ii}| + \sum_{j \neq i} |M'_{ij}| = u_{i}(M')$$

- by the assumption that $|M_{ii}| > |M'_{ii}|$
- since all but two subpaths in (M△M') \ (M_{ii} ∪ M'_{ii}) have one edge in M_{ij} and one edge in M'_{ik}

- Fix a bipartition $\Pi = (\Pi_1, \Pi_2)$ of N
- ► MATCH_Π: choose matching that has
 - (i) maximum cardinality on V_i for all $i \in N$
 - (ii) no edges between V_i and V_j if $i, j \in \Pi_{\ell}$ for $\ell \in \{1, 2\}$
 - (iii) maximum cardinality among all matchings satisfying (i) and (ii), breaking ties serially

Theorem: For any number of agents and any bipartition Π , Match_{Π} can be executed in polynomial time.

Proof idea: reduction to weighted matching

- Fix a bipartition $\Pi = (\Pi_1, \Pi_2)$ of N
- Матснп: choose matching that has
 - (i) maximum cardinality on V_i for all $i \in N$
 - (ii) no edges between V_i and V_j if $i, j \in \Pi_{\ell}$ for $\ell \in \{1, 2\}$
 - (iii) maximum cardinality among all matchings satisfying (i) and (ii), breaking ties serially
- Strategyproof and 2-efficient mechanism for two agents
- No finite approximation ratio for more than two agents

Mix and Match

- MIX-AND-MATCH:
 - 1. Construct random bipartition $\Pi = (\Pi_1, \Pi_2)$: for each agent flip a fair coin to determine whether he goes to Π_1 or Π_2
 - 2. Execute МатснП

Mix and Match

- MIX-AND-MATCH:
 - 1. Construct random bipartition $\Pi = (\Pi_1, \Pi_2)$: for each agent flip a fair coin to determine whether he goes to Π_1 or Π_2
 - 2. Execute Матснп

Theorem: For any number of agents, MIX-AND-MATCH is universally strategyproof and 2-efficient in expectation.

	deterministic		randomized	
	lower bound	upper bound	lower bound	upper bound
two agents	2	2	4/3	2
n agents	2	∞	4/3	2

	deterministic		randomized	
	lower bound	upper bound	lower bound	upper bound
two agents	2	2	4/3	2
n agents	2	∞	4/3	2

	deterministic		randomized	
	lower bound	upper bound	lower bound	upper bound
two agents	2	2	4/3	2
n agents	2	∞	4/3	2

FLIP-AND-MATCH: with probability 1/2 each

- execute Mix-and-Match
- return a maximum cardinality matching

	deterministic		randomized	
	lower bound	upper bound	lower bound	upper bound
two agents	2	2	4/3	2
n agents	2	∞	4/3	2

- Possible extensions
 - Stronger notion of stability: group-strategyproofness
 - Longer exchange sequences

Thank you!

Ashlagi, Fischer, Kash, Procaccia

Mix and Match