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Kidney Exchanges

I End Stage Renal Disease: fatal unless treated with dialysis or
transplantation of a kidney

I Live donation possible, studies show no long-term negative
effect on donor

I But: patients might not be compatible with their potential donor
(usually a relative or friend)

I Kidney exchanges enable transplantations in such cases
I Basic case: two donor-patient pairs such that each donor has

desired level of compatibility with patient of respective other pair
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Incentives in Kidney Exchanges

I Incentives within a single (paired) exchange controlled by
conducting transplantations simultaneously

I As kidney exchanges become more prevalent, incentives of
hospitals also become an issue

I Several hospitals in which patients are treated
I Each hospital has an incentive to transplant its own patients
I Ideally: one large (regional or countrywide) exchange
I But: hospitals might want to “hide” some of their patients and

carry out transplantations among them
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The Model Lower Bounds Deterministic Mechanisms Mix and Match

A Model of Hospitals’ Incentives (Roth et al., 2007)

I Set N of agents, corresponding to hospitals
I Graph G = (V ,E) with V =

⊎
i Vi

I Each vertex v ∈ V corresponds to a donor-patient pair
I Edge (u, v) ∈ E means donor of u is compatible with patient

of v, and donor of v with patient of u

I Agents report subsets V ′i ⊆ Vi

I Mechanism produces matching M′ of subgraph induced by
⊎

i V ′i
I Agent i adds matching M̂i for hidden and unmatched vertices
I Utility of agent i is number of vertices in V ′i matched in M′ and M̂i
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The Model Lower Bounds Deterministic Mechanisms Mix and Match

Desirable Properties of Mechanisms

I Strategyproofness: no agent can gain by hiding vertices
I Approximate efficiency: mechanism is α-efficient if ratio between

size of maximum cardinality matching and returned matching
is at most α

I No monetary payments, for legal and ethical reasons

I “Approximate mechanism design without money”
(Procaccia and Tennenholtz, 2009)
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Lower Bounds

Theorem: If there are at least two agents,

no deterministic strategyproof mechanism can be
α-efficient for α < 2, and

no randomized strategyproof mechanism can be
α-efficient for α < 4/3.
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The Model Lower Bounds Deterministic Mechanisms Mix and Match

A Deterministic Mechanism for Two Agents

I Choose matching that has
(i) maximum cardinality on both V1 and V2 and
(ii) maximum cardinality among all matchings satisfying (i)

I Strategyproof (more on that later)
I 2-efficient, as returned matching is inclusion-maximal
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The Model Lower Bounds Deterministic Mechanisms Mix and Match

A Generalization

I Choose matching that has
(i) maximum cardinality on Vi for all i ∈ N
(ii) maximum cardinality among all matchings satisfying (i)

breaking ties serially
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The Model Lower Bounds Deterministic Mechanisms Mix and Match

A Better Generalization

I Fix a bipartition Π = (Π1,Π2) of N
I MatchΠ: choose matching that has

(i) maximum cardinality on Vi for all i ∈ N
(ii) no edges between Vi and Vj if i, j ∈ Π` for ` ∈ {1, 2}
(iii) maximum cardinality among all matchings satisfying (i)

and (ii), breaking ties serially

I Π = ({1}, {2}) yields the two-agent mechanism we saw earlier

Theorem: For any number of agents and any bipartition Π,
MatchΠ is strategyproof.

Proof idea: . . .
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Proof Idea

I Graph G, bipartition Π = (Π1,Π2), M = MatchΠ(G)

I Agent i hides vertices, M′ = MatchΠ(G′) ∪ M̂i

I M∆M′ = (M ∪M′) \ (M ∩M′)
I vertex-disjoint paths, edges alternate between M and M′

I cycles: have even length, both M and M′ match all vertices
I argument treats paths independently

I Thus assume w.l.o.g.: M∆M′ is a single path, not a cycle
I Arbitrarily fix a direction for this path
I start and end vertex
I (maximal) subpaths inside Vj , from Vi back to Vi
I edges entering and leaving Vj
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The Model Lower Bounds Deterministic Mechanisms Mix and Match

Proof Idea

I Two cases: |Mii | > |M′ii | and |Mii | = |M′ii |, we consider the first
I Both M and M′ have maximum cardinality on Vj for j , i
⇒ every subpath inside Vj for j , i has even length
⇒ enters with M and leaves with M′, or vice versa

I Mjk = ∅ when j, k ∈ Π` for ` ∈ {1, 2}
⇒ path crosses bipartition whenever it enters a new set
⇒ leaving Vi with M it returns with M′, and vice versa

I (M∆M′) \ (Mii ∪M′ii)
I collection of subpaths
I all but two of them have one edge in Mij and one edge in M′ik

for some j, k , i
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The Model Lower Bounds Deterministic Mechanisms Mix and Match

Proof Idea

ui(M) = 2|Mii | +
∑

j,i |Mij |

2(|M′ii |+ 1) +
∑

j,i |M′ij | − 2

= 2|M′ii | +
∑

j,i |M′ij | = ui(M′)

I by the assumption that |Mii | > |M′ii |
I since all but two subpaths in (M∆M′) \ (Mii ∪M′ii) have one

edge in Mij and one edge in M′jk
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A Better Generalization

I Fix a bipartition Π = (Π1,Π2) of N
I MatchΠ: choose matching that has

(i) maximum cardinality on Vi for all i ∈ N
(ii) no edges between Vi and Vj if i, j ∈ Π` for ` ∈ {1, 2}
(iii) maximum cardinality among all matchings satisfying (i)

and (ii), breaking ties serially

Theorem: For any number of agents and any bipartition Π,
MatchΠ can be executed in polynomial time.

Proof idea: reduction to weighted matching
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The Model Lower Bounds Deterministic Mechanisms Mix and Match

A Better Generalization

I Fix a bipartition Π = (Π1,Π2) of N
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I Strategyproof and 2-efficient mechanism for two agents
I No finite approximation ratio for more than two agents
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Mix and Match

I Mix-and-Match:
1. Construct random bipartition Π = (Π1,Π2): for each agent

flip a fair coin to determine whether he goes to Π1 or Π2

2. Execute MatchΠ

Theorem: For any number of agents, Mix-and-Match is
universally strategyproof and 2-efficient in expectation.
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What We (Don’t) Know

deterministic randomized
lower
bound

upper
bound

lower
bound

upper
bound

two agents 2 2 4/3 2

n agents 2 ∞ 4/3 2
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What We (Don’t) Know

deterministic randomized
lower
bound

upper
bound

lower
bound

upper
bound

two agents 2 2 4/3 2
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Flip-and-Match: with probability 1/2 each
I execute Mix-and-Match
I return a maximum cardinality matching
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What We (Don’t) Know

deterministic randomized
lower
bound

upper
bound

lower
bound

upper
bound

two agents 2 2 4/3 2

n agents 2 ∞ 4/3 2

I Possible extensions
I Stronger notion of stability: group-strategyproofness
I Longer exchange sequences
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Thank you!
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