Optimal Impartial Selection

Felix Fischer
Statistical Laboratory, University of Cambridge
fischerf@statslab.cam.ac.uk
(joint work with Max Klimm, TU Berlin)

November 12, 2013

Impartial Selection

- Select member of a set of agents based on nominations by agents from the same set
- Applications
- selection of representatives
- award of a prize
- assignment of responsibilities
- peer review: papers, research proposals, ...
- Assumption: agents are impartial to the selection of other agents
- will reveal their opinion truthfully...
- as long as it does not affect their own chance of selection
- Goal: preserve impartiality, select agent with many nominations

A Formal Model

- Set \mathcal{G} of graphs (N, E) without self loops vertices represent agents, $(i, j) \in E$ means i nominates j
- $\delta_{S}^{-}(i, G)=|\{(j, i) \in E: G=(N, E), j \in S\}|$ number of nominations $i \in N$ receives from $S \subseteq N$
- selection mechanism: maps each $G \in \mathcal{G}$ to distribution on N
- f is impartial if

$$
(f((N, E)))_{i}=\left(f\left(\left(N, E^{\prime}\right)\right)\right)_{i} \quad \text { if } \quad E \backslash(\{i\} \times V)=E^{\prime} \backslash(\{i\} \times V)
$$

- f is α-optimal, for $\alpha \leq 1$, if for all $G \in \mathcal{G}$,

$$
\frac{\mathbb{E}_{i \sim f(G)}\left[\delta_{N}^{-}(i, G)\right]}{\Delta(G)} \geq \alpha
$$

where $\Delta(G)=\max _{i \in N} \delta_{N}^{-}(i, G)$

Related Work

- Impartial Nominations for a Prize (Moulin, Holzman)
- plurality, deterministic mechanisms, axiomatic study
- Strategyproof Selection from the Selectors (Alon et al.)
- approval, deterministic and randomized mechanisms, selection of k agents with large number of nominations
- Impartial Division of a Dollar (de Clippel et al.)
- more general than randomized mechanisms, axiomatic study
- Plurality: one nomination per agent (outdegree one)
- Approval: zero or more nominations (arbitrary outdegree)

Related Work

- Impartial Nominations for a Prize (Moulin, Holzman)
- plurality, deterministic mechanisms, axiomatic study
- Strategyproof Selection from the Selectors (Alon et al.)
- approval, deterministic and randomized mechanisms, selection of k agents with large number of nominations
- Impartial Division of a Dollar (de Clippel et al.)
- more general than randomized mechanisms, axiomatic study

	approval	plurality
deterministic	0	$1 / n$
randomized	$[1 / 4,1 / 2]$	$[1 / 4,1]$

Related Work

- Impartial Nominations for a Prize (Moulin, Holzman)
- plurality, deterministic mechanisms, axiomatic study
- Strategyproof Selection from the Selectors (Alon et al.)
- approval, deterministic and randomized mechanisms, selection of k agents with large number of nominations
- Impartial Division of a Dollar (de Clippel et al.)
- more general than randomized mechanisms, axiomatic study

Outline and Results

- 1/2-optimal mechanism for approval
- same mechanism is 7/12-optimal for plurality
(may actually be $2 / 3$-optimal, but not better)
- upper bound for plurality of roughly $3 / 4$
- Lower bounds from
- better analysis of the mechanism of Alon et al.
- generalization of the analysis to a (fairly) natural generalization of the mechanism
- Upper bound from optimization approach to finding mechanisms

The 2-Partition Mechanism (Alon et al.)

- Randomly partition N into $\left(S_{1}, S_{2}\right)$
- Select $i \in \arg \max _{i^{\prime} \in S_{2}} \delta_{S_{1}}^{-}\left(i^{\prime}, G\right)$ uniformly at random
- 1/4-optimal
- consider any $G \in \mathcal{G}$ and vertex i^{*} with degree $\Delta=\Delta(G)$
- $i^{*} \in S_{2}$ with probability $1 / 2$
- $\mathbb{E}\left[\delta_{S_{1}}^{-}(i, G) \mid i^{*} \in S_{2}\right]=\Delta / 2$
- vertex selected when $i^{*} \in S_{2}$ has at least this degree
- Analysis of the mechanism is tight (graph with a single edge)
- Analysis of the problem is not tight: not obvious how to close the gap between $1 / 4$ and $1 / 2$, and by which analysis

The 2-Partition Mechanism (Revisited)

- Consider vertex i^{*} with degree Δ
- Randomly partition $N \backslash\left\{i^{*}\right\}$ into $\left(S_{1}, S_{2}\right)$
- Based on $\left(S_{1}, S_{2}\right)$ adversary chooses $d=\max _{i \in S_{2}} \delta_{S_{1}}^{-}(i, G)$
- i^{*} goes to S_{1} or S_{2} with probability $1 / 2$ each
- Depending on $d^{*}=\delta_{S_{1}}^{-}\left(i^{*}, G\right)$, adversary will
- set d to 0 and let i^{*} win with probability $1 / 2$
- set d to d^{*} and beat i^{*} (assume ties broken against i^{*})
- Selected vertex has expected degree $\min \left\{\Delta / 2, d^{*}\right\}$
- Sum over distribution of d^{*}

The 2-Partition Mechanism (Revisited)

- Consider vertex i^{*} with degree Δ
- Randomly partition $N \backslash\left\{i^{*}\right\}$ into $\left(S_{1}, S_{2}\right)$
- Based on $\left(S_{1}, S_{2}\right)$ adversary chooses $d=\max _{i \in S_{2}} \delta_{S_{1}}^{-}(i, G)$
- i^{*} goes to S_{1} or S_{2} with probability $1 / 2$ each
- Depending on $d^{*}=\delta_{S_{1}}^{-}\left(i^{*}, G\right)$, adversary will
- set d to 0 and let i^{*} win with probability $1 / 2$
- set d to d^{*} and beat i^{*} (assume ties broken against i^{*})
- Selected vertex has expected degree $\min \left\{\Delta / 2, d^{*}\right\}$
- Sum over distribution of d^{*}
- Parameterized lower bound $\alpha(\Delta)$ in closed form
- non-decreasing in Δ
- $\alpha(1)=1 / 4$
- $\alpha(2)=3 / 8$

The 2-Partition Mechanism (Revisited)

- Consider vertex i^{*} with degree Δ
- Randomly partition $N \backslash\left\{i^{*}\right\}$ into $\left(S_{1}, S_{2}\right)$
- Based on $\left(S_{1}, S_{2}\right)$ adversary chooses $d=\max _{i \in S_{2}} \delta_{S_{1}}^{-}(i, G)$
- i^{*} goes to S_{1} or S_{2} with probability $1 / 2$ each
- Depending on $d^{*}=\delta_{S_{1}}^{-}\left(i^{*}, G\right)$, adversary will
- set d to 0 and let i^{*} win with probability $1 / 2$
- set d to d^{*} and beat i^{*} (assume ties broken against i^{*})
- Selected vertex has expected degree $\min \left\{\Delta / 2, d^{*}\right\}$
- Sum over distribution of d^{*}
- Parameterized lower bound $\alpha(\Delta)$ in closed form
- non-decreasing in Δ
- $\alpha(1)=1 / 4$
- $\alpha(2)=3 / 8$

The k-Partition Mechanism

randomly partition N into $\left(S_{1}, \ldots, S_{k}\right)$, denote $S_{<j}=\bigcup_{i<j} S_{i}$
$\left\{i^{*}\right\}:=\emptyset, d^{*}:=0$
for $j=2, \ldots, k$
if $\max _{i \in S_{j}} \delta_{S_{<j \backslash\left\{i^{*}\right\}}^{-}}^{-}(i, G) \geq d^{*}$
choose $i \in \arg \max _{i^{\prime} \in S_{j}} \delta_{S_{<j}}^{-}\left(i^{\prime}, G\right)$ uniformly at random

$$
i^{*}:=i, d^{*}:=\delta_{S_{<j}}^{-}(i, G)
$$

select i^{*}

- Goal: parameterized lower bound $\alpha_{k}(\Delta)$

The k-Partition Mechanism

randomly partition N into $\left(S_{1}, \ldots, S_{k}\right)$, denote $S_{<j}=\bigcup_{i<j} S_{i}$
$\left\{i^{*}\right\}:=\emptyset, d^{*}:=0$
for $j=2, \ldots, k$
if $\max _{i \in S_{j}} \delta_{S_{\left.<j \backslash i i^{*}\right\}}^{-}}^{-}(i, G) \geq d^{*}$
choose $i \in \arg \max _{i^{\prime} \in S_{j}} \delta_{S_{<j}}^{-}\left(i^{\prime}, G\right)$ uniformly at random

$$
i^{*}:=i, d^{*}:=\delta_{S_{<j}}^{-}(i, G)
$$

select i^{*}

- Goal: parameterized lower bound $\alpha_{k}(\Delta)$

The k-Partition Mechanism

- Consider vertex i^{*} with degree Δ
- Randomly partition $N \backslash\left\{i^{*}\right\}$ into $\left(S_{1}, \ldots, S_{k}\right)$
- For $j=2, \ldots, k$, adversary decides to beat i^{*} or let it win if $i^{*} \in S_{j}$
- i^{*} goes to each S_{j} with probability $1 / k$
- Only rightmost alternative to beat i^{*} matters, as either that alternative or i^{*} is selected
- For fixed $\left(S_{1}, \ldots, S_{k}\right)$, selected vertex has expected degree

$$
\min _{j=1, \ldots, k}\left\{\delta_{S_{<j}}^{-}\left(i^{*}, G\right)+\frac{k-j}{k}\left(\Delta-\delta_{S_{<j}}^{-}\left(i^{*}, G\right)\right)\right\}
$$

- Sum over distribution of $\left(\delta_{S_{j}}^{-}\left(i^{*}, G\right)\right)_{j=1, \ldots, k}$

The k-Partition Mechanism

randomly partition N into $\left(S_{1}, \ldots, S_{k}\right)$, denote $S_{<j}=\bigcup_{i<j} S_{i}$
$\left\{i^{*}\right\}:=\emptyset, d^{*}:=0$
for $j=2, \ldots, k$
if $\max _{i \in S_{j}} \delta_{S_{<j \backslash\left\{i^{*}\right\}}^{-}}(i, G) \geq d^{*}$
choose $i \in \arg \max _{i^{\prime} \in S_{j}} \delta_{S_{<j}}^{-}\left(i^{\prime}, G\right)$ uniformly at random

$$
i^{*}:=i, d^{*}:=\delta_{S_{<j}}^{-}(i, G)
$$

select i^{*}

- Parameterized lower bound $\alpha_{k}(\Delta)$
- for every $k \geq 2$, non-decreasing in $\Delta=\Delta(G)$
- $\alpha_{k}(1) \geq(k-1) /(2 k)$
- $\alpha_{k}(2) \geq 7 / 12-o(k) / k$

The Permutation Mechanism

pick random permutation $\left(\pi_{1}, \ldots, \pi_{n}\right)$ of N, denote $\pi_{<j}=\bigcup_{i<j}\left\{\pi_{i}\right\}$
$i^{*}:=\pi_{1}, d^{*}:=0$
for $j=2, \ldots, k$

$$
\begin{aligned}
& \text { if } \delta_{\left.\pi_{<} \backslash \backslash i^{*}\right\}}^{-}\left(\pi_{j}\right) \geq d^{*} \\
& \quad i^{*}:=\pi_{j}, d^{*}:=\delta_{\pi_{<j}}^{-}\left(\pi_{j}\right)
\end{aligned}
$$

return i^{*}

- Limit of k-partition mechanism as $k \rightarrow \infty$
- 1/2-optimal for approval, 7/12-optimal for plurality
- k-partition for fixed k may be more desirable, allows more anonymous processing of ballots

Upper Bound for Plurality

- For any α-optimal impartial selection mechanism for plurality,

$$
\alpha \leq \begin{cases}5 / 6 & \text { if } n=3 \\ (6 n-1) / 8 n & \text { if } n \geq 6 \text { even, and } \\ 3 / 4 & \text { otherwise }\end{cases}
$$

Upper Bound for Plurality

- For any α-optimal impartial selection mechanism for plurality,

$$
\alpha \leq \begin{cases}5 / 6 & \text { if } n=3 \\ (6 n-1) / 8 n & \text { if } n \geq 6 \text { even, and } \\ 3 / 4 & \text { otherwise }\end{cases}
$$

- Optimal mechanisms from LP
- Large number of constraints (linear in number of graphs)
- Upper bound for small graphs from dual, then generalize

Upper Bound for Plurality, $n \geq 6$ even

W.I.o.g., only consider symmetric mechanisms

$$
\begin{aligned}
& n p_{1}=1 \\
& 2 p_{2}+2 p_{3} \leq 1 \\
& p_{1}+p_{2}+p_{3}+p_{4}+(n-4) p_{5}=1 \\
& 2 p_{5}+2 p_{6} \leq 1 \\
& 4 p_{4} \leq 1 \\
& p_{6} \leq 1 / 2-1 /(4 n) \\
& \alpha \leq \frac{2 p_{6}+\left(1-p_{6}\right)}{2}=\frac{p_{6}+1}{2}
\end{aligned}
$$

Thank you!

