Optimal Impartial Selection

Felix Fischer

Statistical Laboratory, University of Cambridge fischerf@statslab.cam.ac.uk

(joint work with Max Klimm, TU Berlin)

November 12, 2013

Impartial Selection

- Select member of a set of agents based on nominations by agents from the same set
- Applications
 - selection of representatives
 - award of a prize
 - assignment of responsibilities
 - peer review: papers, research proposals, ...
- Assumption: agents are impartial to the selection of other agents
 - will reveal their opinion truthfully...
 - as long as it does not affect their own chance of selection
- Goal: preserve impartiality, select agent with many nominations

A Formal Model

- Set G of graphs (N, E) without self loops vertices represent agents, (i, j) ∈ E means i nominates j
- ► $\delta_S^-(i, G) = |\{(j, i) \in E : G = (N, E), j \in S\}|$ number of nominations $i \in N$ receives from $S \subseteq N$
- ▶ selection mechanism: maps each $G \in G$ to distribution on N
- f is impartial if

 $(f((N, E)))_i = (f((N, E')))_i$ if $E \setminus (\{i\} \times V) = E' \setminus (\{i\} \times V)$

• *f* is α -optimal, for $\alpha \leq 1$, if for all $G \in \mathcal{G}$,

$$\frac{\mathbb{E}_{i \sim f(G)}[\delta_N^-(i,G)]}{\Delta(G)} \ge \alpha,$$

where $\Delta(G) = \max_{i \in N} \delta_N^-(i, G)$

Related Work

- Impartial Nominations for a Prize (Moulin, Holzman)
 - plurality, deterministic mechanisms, axiomatic study
- Strategyproof Selection from the Selectors (Alon et al.)
 - approval, deterministic and randomized mechanisms, selection of k agents with large number of nominations
- Impartial Division of a Dollar (de Clippel et al.)
 - more general than randomized mechanisms, axiomatic study
- Plurality: one nomination per agent (outdegree one)
- Approval: zero or more nominations (arbitrary outdegree)

Related Work

- Impartial Nominations for a Prize (Moulin, Holzman)
 - plurality, deterministic mechanisms, axiomatic study
- Strategyproof Selection from the Selectors (Alon et al.)
 - approval, deterministic and randomized mechanisms, selection of k agents with large number of nominations
- Impartial Division of a Dollar (de Clippel et al.)
 - more general than randomized mechanisms, axiomatic study

	approval	plurality
deterministic	0	1/n
randomized	[1/4, 1/2]	[1/4, 1]

Related Work

- Impartial Nominations for a Prize (Moulin, Holzman)
 - plurality, deterministic mechanisms, axiomatic study
- Strategyproof Selection from the Selectors (Alon et al.)
 - approval, deterministic and randomized mechanisms, selection of k agents with large number of nominations
- Impartial Division of a Dollar (de Clippel et al.)
 - more general than randomized mechanisms, axiomatic study

Outline and Results

- 1/2-optimal mechanism for approval
- same mechanism is 7/12-optimal for plurality (may actually be 2/3-optimal, but not better)
- upper bound for plurality of roughly 3/4
- Lower bounds from
 - better analysis of the mechanism of Alon et al.
 - generalization of the analysis to a (fairly) natural generalization of the mechanism
- Upper bound from optimization approach to finding mechanisms

The 2-Partition Mechanism (Alon et al.)

- Randomly partition N into (S_1, S_2)
- ▶ Select $i \in \arg \max_{i' \in S_2} \delta^-_{S_1}(i', G)$ uniformly at random
- 1/4-optimal
 - consider any $G \in \mathcal{G}$ and vertex i^* with degree $\Delta = \Delta(G)$
 - $i^* \in S_2$ with probability 1/2
 - ► $\mathbb{E}[\delta_{S_1}^-(i,G) | i^* \in S_2] = \Delta/2$
 - ▶ vertex selected when $i^* \in S_2$ has at least this degree
- Analysis of the mechanism is tight (graph with a single edge)
- Analysis of the problem is not tight: not obvious how to close the gap between 1/4 and 1/2, and by which analysis

The 2-Partition Mechanism (Revisited)

- Consider vertex i^{*} with degree Δ
- Randomly partition $N \setminus \{i^*\}$ into (S_1, S_2)
- ▶ Based on (S_1, S_2) adversary chooses $d = \max_{i \in S_2} \delta_{S_1}^-(i, G)$
- i^* goes to S_1 or S_2 with probability 1/2 each
- Depending on $d^* = \delta_{S_1}^-(i^*, G)$, adversary will
 - set d to 0 and let i* win with probability 1/2
 - set d to d* and beat i* (assume ties broken against i*)
- Selected vertex has expected degree min {Δ/2, d*}
- Sum over distribution of d*

The 2-Partition Mechanism (Revisited)

- Consider vertex i^{*} with degree Δ
- Randomly partition $N \setminus \{i^*\}$ into (S_1, S_2)
- ▶ Based on (S_1, S_2) adversary chooses $d = \max_{i \in S_2} \delta_{S_1}^-(i, G)$
- i^* goes to S_1 or S_2 with probability 1/2 each
- Depending on $d^* = \delta_{S_1}^-(i^*, G)$, adversary will
 - set d to 0 and let i* win with probability 1/2
 - set d to d* and beat i* (assume ties broken against i*)
- Selected vertex has expected degree min {Δ/2, d*}
- Sum over distribution of d*
- Parameterized lower bound α(Δ) in closed form
 - ▶ non-decreasing in ∆

 - α(2) = 3/8

The 2-Partition Mechanism (Revisited)

- Consider vertex i^{*} with degree Δ
- Randomly partition $N \setminus \{i^*\}$ into (S_1, S_2)
- ▶ Based on (S_1, S_2) adversary chooses $d = \max_{i \in S_2} \delta_{S_1}^-(i, G)$
- i^* goes to S_1 or S_2 with probability 1/2 each
- Depending on $d^* = \delta_{S_1}^-(i^*, G)$, adversary will
 - set d to 0 and let i* win with probability 1/2
 - set d to d* and beat i* (assume ties broken against i*)
- Selected vertex has expected degree min {Δ/2, d*}
- Sum over distribution of d*
- Parameterized lower bound α(Δ) in closed form
 - ▶ non-decreasing in ∆

 - α(2) = 3/8

randomly partition *N* into (S_1, \ldots, S_k) , denote $S_{<j} = \bigcup_{i < j} S_i$ $\{i^*\} := \emptyset, d^* := 0$ for $j = 2, \ldots, k$ if $\max_{i \in S_j} \delta_{S_{<j} \setminus \{i^*\}}^-(i, G) \ge d^*$ choose $i \in \arg \max_{i' \in S_j} \delta_{S_{<j}}^-(i', G)$ uniformly at random $i^* := i, d^* := \delta_{S_{<j}}^-(i, G)$ select i^*

• Goal: parameterized lower bound $\alpha_k(\Delta)$

randomly partition N into (S_1, \ldots, S_k) , denote $S_{<j} = \bigcup_{i < j} S_i$ $\{i^*\} := \emptyset, d^* := 0$ for $j = 2, \ldots, k$ if $\max_{i \in S_j} \delta_{S_{<j} \setminus \{i^*\}}^-(i, G) \ge d^*$ choose $i \in \arg \max_{i' \in S_j} \delta_{S_{<j}}^-(i', G)$ uniformly at random $i^* := i, d^* := \delta_{S_{<j}}^-(i, G)$ select i^*

• Goal: parameterized lower bound $\alpha_k(\Delta)$

- Consider vertex i^{*} with degree Δ
- Randomly partition $N \setminus \{i^*\}$ into (S_1, \ldots, S_k)
- For j = 2, ..., k, adversary decides to beat i^* or let it win if $i^* \in S_j$
- i^* goes to each S_j with probability 1/k
- Only rightmost alternative to beat *i** matters, as either that alternative or *i** is selected
- For fixed (S_1, \ldots, S_k) , selected vertex has expected degree

$$\min_{j=1,\dots,k}\left\{\delta_{\mathcal{S}_{$$

Sum over distribution of
$$\left(\delta_{S_j}^-(i^*, G)\right)_{j=1,...,k}$$

randomly partition N into (S_1, \ldots, S_k) , denote $S_{<j} = \bigcup_{i < j} S_i$ $\{i^*\} := \emptyset, d^* := 0$ for $j = 2, \ldots, k$ if $\max_{i \in S_j} \delta_{S_{<j} \setminus \{i^*\}}^-(i, G) \ge d^*$ choose $i \in \arg \max_{i' \in S_j} \delta_{S_{<j}}^-(i', G)$ uniformly at random $i^* := i, d^* := \delta_{S_{<j}}^-(i, G)$

select i*

- Parameterized lower bound α_k(Δ)
 - for every $k \ge 2$, non-decreasing in $\Delta = \Delta(G)$
 - $\alpha_k(1) \ge (k-1)/(2k)$
 - $\alpha_k(2) \ge 7/12 o(k)/k$

The Permutation Mechanism

pick random permutation (π_1, \ldots, π_n) of *N*, denote $\pi_{< j} = \bigcup_{i < j} \{\pi_i\}$ $i^* := \pi_1, d^* := 0$ for $j = 2, \ldots, k$ if $\delta^-_{\pi_{< j} \setminus \{i^*\}}(\pi_j) \ge d^*$ $i^* := \pi_j, d^* := \delta^-_{\pi_{< j}}(\pi_j)$ return i^*

- Limit of *k*-partition mechanism as $k \to \infty$
- 1/2-optimal for approval, 7/12-optimal for plurality
- k-partition for fixed k may be more desirable, allows more anonymous processing of ballots

For any α -optimal impartial selection mechanism for plurality,

$$\alpha \leq \begin{cases} 5/6 & \text{if } n = 3, \\ (6n-1)/8n & \text{if } n \geq 6 \text{ even, and} \\ 3/4 & \text{otherwise} \end{cases}$$

For any α -optimal impartial selection mechanism for plurality,

$$\alpha \leq \begin{cases} 5/6 & \text{if } n = 3, \\ (6n-1)/8n & \text{if } n \ge 6 \text{ even, and} \\ 3/4 & \text{otherwise} \end{cases}$$

- Optimal mechanisms from LP
- Large number of constraints (linear in number of graphs)
- Upper bound for small graphs from dual, then generalize

Upper Bound for Plurality, $n \ge 6$ even

W.I.o.g., only consider symmetric mechanisms

$$np_{1} = 1$$

$$2p_{2} + 2p_{3} \le 1$$

$$p_{1} + p_{2} + p_{3} + p_{4} + (n - 4)p_{5} = 1$$

$$2p_{5} + 2p_{6} \le 1$$

$$4p_{4} \le 1$$

$$p_{6} \le 1/2 - 1/(4n)$$

$$\alpha \leq \frac{2p_6 + (1 - p_6)}{2} = \frac{p_6 + 1}{2}$$

Thank you!