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Abstract

A central object of study in optimal stopping theory is the single-choice prophet inequality
for independent, identically distributed random variables: given a sequence of random
variables X1, . . . , Xn drawn independently from the same distribution, the goal is to choose
a stopping time τ such that for the maximum value of α and for all distributions, E[Xτ ] ≥
α ·E[maxtXt]. What makes this problem challenging is that the decision whether τ = t may
only depend on the values of the random variables X1, . . . , Xt and on the distribution F . For
a long time the best known bound for the problem had been α ≥ 1−1/e ≈ 0.632, but recently
a tight bound of α ≈ 0.745 was obtained. The case where F is unknown, such that the
decision whether τ = t may depend only on the values of the random variables X1, . . . , Xt,
is equally well motivated but has received much less attention. A straightforward guarantee
for this case of α ≥ 1/e ≈ 0.368 can be derived from the well-known optimal solution to the
secretary problem, where an arbitrary set of values arrive in random order and the goal is
to maximize the probability of selecting the largest value. We show that this bound is in
fact tight. We then investigate the case where the stopping time may additionally depend
on a limited number of samples from F , and show that even with o(n) samples α ≤ 1/e.
On the other hand, n samples allow for a significant improvement, while O(n2) samples are
equivalent to knowledge of the distribution: specifically, with n samples α ≥ 1− 1/e ≈ 0.632
and α ≤ ln(2) ≈ 0.693, and with O(n2) samples α ≥ 0.745− ε for any ε > 0.

1 Introduction

The theory of optimal stopping is concerned with sequential decision making given imperfect
information about the future, in order to maximize a reward or minimize a cost. Two canonical
problems in the field are the secretary problem and the prophet problem. Both problems have
over the past few years also received considerable attention from theoretical computer science
and operations research, at least in part due to their relevance to the design of posted-price
mechanisms for online sales.

In the secretary problem we are given n distinct, non-negative numbers from an unknown
range. These numbers are presented in random order, and the goal is to stop at one of these
numbers in order to maximize the probability with which we select the maximum. The problem
has a surprisingly simple, and surprisingly positive, answer: by discarding a 1/e fraction of the
numbers, and then selecting the first number that is greater than any of the discarded numbers,
one is guaranteed to select the maximum with probability 1/e [e.g., 32]. The guarantee of 1/e
achieved by this simple stopping rule is best possible, and remains best possible for example
when numbers come from a uniform distribution with unknown and randomly chosen endpoints
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and are therefore correlated random variables [9, 31]. When numbers are i.i.d. from a known
distribution, a better guarantee of around 0.58 can be obtained [32], and this bound is again
tight.

In the prophet problem we are again shown n non-negative numbers, one at a time, but now
these numbers are independent draws from known distributions and our goal is to maximize
the expected value of the number on which we stop relative to the expected maximum value
in the sequence. Two central results for this problem concern the case where the distributions
are distinct and the case where they are identical. For the former a tight bound of 1/2 was
given by Krengel and Sucheston, Krengel and Sucheston [41, 42] and Samuel-Cahn [47]. For the
latter a lower bound of 1− 1/e ≈ 0.632 due to Hill and Kertz [36], corresponding to a stopping
rule with this guarantee, was improved only very recently, first to around 0.738 by Abolhassani
et al. [1] and then to around 0.745 by Correa et al. [15]. The lower bound of Correa et al. [15] is
in fact known to be tight due to an impossibility result of Hill and Kertz [36] and Kertz [39]
that implies a matching upper bound.

A natural variant of the prophet problem, for both identical and non-identical distributions,
can be obtained if we assume that the distributions from which values are drawn are unknown.
Despite its obvious appeal, which was noted for example by Azar et al. [5], precious little is
known about this variant.

Our Contribution We consider the prophet problem in which values are drawn independently
from a single unknown distribution, and ask which approximation guarantees can be obtained
relative to the expected maximum value in hindsight. It is worth pointing out that, in contrast
to the case where the distribution is known and an optimal stopping rule can be obtained
via backward induction, there is no clear candidate for an optimal stopping rule. The case of
identical distributions seems particularly interesting, as here one may hope to be able to learn
something about later values from earlier ones.

A guarantee of 1/e for the problem can be obtained in a relatively straightforward way from
the well-known optimal stopping rule for the secretary problem, see Theorem 1 in Section 3.
The rule is guaranteed to stop on the maximum value with probability at least 1/e, and one can
show that this implies a 1/e-approximation relative to the expected maximum. Note that such
an analysis, however, does not take into account that all values come from the same distribution
and thus ignores any possibility of the aforementioned learning.

We show that no learning of the distribution is possible and that the straightforward guarantee
of 1/e is in fact best possible in the prophet setting, see Theorem 2 in Section 3. The main
difficulty in showing an impossibility result of this kind is that the set of stopping rules to which it
applies is very rich. We will see, however, that for every stopping rule there exists a set V ⊆ N of
arbitrary size and with an arbitrary gap between the largest and second-largest element on which
the stopping rule is what we call value-oblivious: for random variables X1, . . . , Xn supported
on V , the decision to stop at Xi when Xi > max{X1, . . . , Xi−1} does not depend on the values
of the random variables X1, . . . , Xi but only on whether Xi is the largest among these values.
We will then construct a distribution F with support V such that n values drawn independently
from F are pairwise distinct with probability arbitrarily close to one and the expectation of their
maximum is dominated by the largest value in V . The objective of the prophet problem on F is
thus identical, up to a small error, to that of the secretary problem, and any stopping rule with
a guarantee better than 1/e for the former would yield such a stopping rule for the latter. To
understand why stopping rules must be value-oblivious it is useful to consider the special case
where n = 2. In this case we may focus on rules that always stop at X2 whenever they have
not stopped at X1, and every such stopping rule can be described by a function p : R→ [0, 1]
such that p(x) is the probability of stopping at X1 when X1 = x. By the Bolzano–Weierstrass
theorem the infinite sequence (p(n))n∈N contains a monotone subsequence and thus, for some
q ∈ [0, 1] and every ε > 0, a subsequence of values contained in the interval [q − ε, q + ε]. For
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Figure 1: Overview of results. The number of samples is displayed along the horizontal axis, the performance
guarantee along the vertical axis. Lower bounds, shown as a solid line and two dots, result from stopping rules
with a certain performance guarantee. Upper bounds, shown as dashed lines, correspond to impossibility results
that no stopping rule can improve upon. The results for o(n) and Θ(n2) samples are tight. With the exception of
the upper bound of approximately 0.745, all results are new to this paper.

random variables that only take values in the index set of that latter subsequence, the stopping
rule will therefore stop at the first random variable with what is essentially a fixed probability.
When n > 2 the set of possible stopping rules becomes much richer, and identifying a set V on
which a particular stopping rule is value-oblivious becomes much more challenging. Rather than
the Bolzano–Weierstrass theorem, our proof uses the infinite version of Ramsey’s theorem [43]
to establish the existence of such a set.

Motivated by this impossibility result we then turn to the case where the stopping rule has
access to a limited number of additional samples from the distribution, which it may use in
deciding when to stop. An extension of our impossibility result shows that o(n) samples are
not enough to improve on the bound of 1/e. The interesting case therefore is the one with Ω(n)
samples, and we show that a simple stopping rule achieves a guarantee of 1− 1/e ≈ 0.632 with
n− 1 samples, see Theorem 3 in Section 4. The rule starts by drawing n− 1 samples. Then,
when considering the ith random variable for i ≥ 1, it also considers a random subset of size n−1
drawn uniformly from the n− 1 initial samples and the i− 1 random variables seen so far. If the
ith random variable is greater than the maximum of that random subset the rule stops, otherwise
it continues with the next random variable. While the stopping rule itself is easy to describe,
its analysis relies on an insight that is somewhat subtle. Indeed, each of the sets of random
variables used to set a threshold for acceptance is distributed like a set of n− 1 fresh samples
from the distribution. The expected value collected from each random variable, conditioned
on its acceptance, thus equals the expected maximum value of n independent draws from the
distribution, and the probability of accepting a random variable conditioned on reaching it is
exactly 1/n. The approximation guarantee is then equal to the overall probability of stopping,
which is at least 1− 1/e. By a straightforward extension, Corollary 2 in Section 4, we obtain a
lower bound of 1+γ

2 (1− 1/e) on the guarantee achievable with γ n samples for any γ ∈ [0, 1].
We complement the lower bound of 1− 1/e with matching upper bounds for two different

classes of stopping rules that share specific properties of the stopping rule described above.
These bounds limit the types of approaches that could conceivably be used to go beyond a
performance guarantee of 1− 1/e. We then give a parametric upper bound that applies to any
stopping rule with access to γ n samples for γ ≥ 0, see Theorem 4 in Section 4. For rules that
use at most n samples this upper bound is equal to ln(2) ≈ 0.693 and thus nearly tight.

We finally show that O(n2) samples are enough to get arbitrarily close to the optimal
guarantee of around 0.745 attainable when the distribution is known, see Theorem 5 in Section 5.
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This is achieved by mimicking the stopping rule that attains that bound, which uses a decreasing
sequence of thresholds corresponding to conditional acceptance probabilities that increase over
time, but using quantiles of the empirical distribution rather than the actual one. By discarding a
constant initial fraction of the values, and using the inequality of [0]DKW to show simultaneous
concentration of all empirical quantiles, we reduce the number of required samples from O(n4)
to O(n2) relative to the obvious approach that potentially stops on any of the values and uses
Chernoff and union bounds to show concentration.

Taken together our results reveal a phase transition from secretary-like to prophet-like
behavior when going from o(n) to Ω(n) samples, and show that O(n2) samples are equivalent to
full knowledge of the distribution.

Follow-Up Work Rubinstein et al. [46] subsequently showed that a guarantee arbitrarily
close to 0.745 can in fact already be achieved with O(n) samples. Kaplan et al. [38] and Correa
et al. [17] studied generalizations of the problem we consider here. The results of Kaplan et al.
imply a lower bound for our problem with γn samples of e−e

−γ
when 0 ≤ γ ≤ 0.567 and of

around γ(1− γ − e−γ) when 0.567 ≤ γ ≤ 1. This improves on our lower bound when γ < 1 and
matches our lower bound when γ = 1. The results of Correa et al., on the other hand, imply an
improved lower bound of 0.635 when γ = 1, i.e., for a situation with n samples.

Further Related Work For early work on the classic single-choice prophet inequality in
mathematics the reader is referred to a survey of Hill and Kertz [37]. Starting from work of
Hajiaghayi et al. [35], the prophet problem and extensions to richer feasibility conditions have
seen a surge of interest in theoretical computer science. This has produced prophet inequalities
for matroids and polymatroids [e.g., 13, 40, 2, 21, 29, 45, 4], settings where feasible solutions
are given by an arbitrary downward-closed set system [e.g., 44, 45], matching problems [e.g.,
13, 40, 34, 27], knapsack constraints [e.g., 29, 22], resource allocation problems involving intervals
and paths [e.g., 14], and combinatorial auctions [e.g., 28, 22, 23].

There also exists a relatively small but important body of prior work on the case of unknown
distributions. Most relevant for us is the aforementioned work by Azar et al. [5], which focuses on
richer feasibility structures such as matchings and matroids, and work by Babaioff et al. [8], who
consider a setting similar to ours but focus on a different objective, revenue maximization, apply
different techniques, and obtain results that are qualitatively different from ours. Independently
from our work, Rubinstein et al. [46] studied the case of random variables that are drawn
independently from unknown non-identical distributions, and showed that a single sample from
each distribution is enough to achieve a guarantee of 1/2, which matches the best possible
guarantee that can be achieved when the distributions are known.

In another variant of the prophet problem, the so-called prophet secretary problem, random
variables are drawn from known non-identical distributions and observed in random order.
The goal is again to immediately and irrevocably choose random variables with large value.
Esfandiari et al. [26] gave a lower bound of 1− 1/e for the version of the problem where a single
random variable must be chosen, which was subsequently improved to 1− 1/e+ 1/400 by Azar
et al. [6]. The best bounds currently known for the single-choice version are a lower bound
of 1 − 1/e + 1/27 ≈ 0.669 and an upper bound of

√
3 − 1 ≈ 0.732 due to Correa et al. [16].

Combinatorial versions of the prophet secretary problem have been studied by Ehsani et al. [25].
The aforementioned bounds of Kaplan et al. [38] and Correa et al. [17] also apply to a single-choice
prophet secretary problem with unknown distributions and additional samples.

Optimal stopping with unknown distributions has also been studied in operations research and
management science, but the types of problems, objectives, and techniques differ significantly from
ours and typically involve regret minimization, see, e.g., the results of Goldenshluger and Zeevi [33]
and the recent survey of den Boer [19]. The literature in operations research and management
science moreover contains results on a broad range of stochastic optimization problems, which
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share certain features of the basic prophet inequality problem and its combinatorial extensions.
These problems include constrained Bayesian online selection [e.g., 4], Bayesian assortment
optimization [e.g., 30], and certain models of network revenue management [e.g., 3]. To the best
of our knowledge, they have not been studied from the perspective of sample complexity.

A final line of related work, in economics and theoretical computer science, has studied posted
pricing and prophet inequalities with inaccurate priors [10, 11, 20]. This line of work assumes
access to prior distributions that are close in terms of some metric to the actual distributions,
and seeks either max-min optimal mechanisms or performance guarantees that are parametrized
by the distance between the assumed and actual priors.

2 Preliminaries

Denote by N the set of positive integers and let N0 = N ∪ {0}. For i ∈ N, let [i] = {1, . . . , i} and
denote by Si the set of permutations of [i].

Let k ∈ N0 and n ∈ N. We consider (k, n)-stopping rules that sequentially observe random
variables X1, . . . , Xn and have access to samples S1, . . . , Sk, and for each i = 1, . . . , n decide
whether to stop on Xi based on the values of X1, . . . , Xi and S1, . . . , Sk. We assume that
X1, . . . , Xn and S1, . . . , Sk are independent and identically distributed, and respectively denote
by f and F the probability density function and cumulative distribution function of their
distribution. Formally, a (k, n)-stopping rule r is a family of functions r1, . . . , rn where ri :
Rk+i

+ → [0, 1] for all i = 1, . . . , n. Here, ri(s1 . . . , sk, x1, . . . , xi) for s ∈ Rk+ and x ∈ Rn+ is the
probability of stopping at Xi conditioned on having received S1 = s1 . . . , S = sk as samples and
X1 = x1, . . . , Xi = xi as values and not having stopped on any of X1, . . . , Xi−1. The stopping
time τ of a (k, n)-stopping rule r, given S1, . . . , Sk and X1, . . . , Xn, is thus the random variable
with support {1, . . . , n} ∪ {∞} such that for all s ∈ Rk+ and x ∈ Rn+,

Pr [τ = i | S1 = s1, . . . , Sk = sk, X1 = x1, . . . , Xn = xn] =(
i−1∏
j=1

(
1− rj(s1, . . . , sk, x1, . . . , xj)

))
· ri(s1 . . . , sk, x1, . . . , xi).

For a given stopping rule we will be interested in the expected value E [Xτ ] of the variable
at which it stops, where we use the convention that X∞ = 0, and will measure its performance
relative to the expected maximum E [max{X1, . . . , Xn}] of the random variables X1, . . . , Xn.
We will say that a stopping rule achieves an approximation guarantee α, for α ≤ 1, if for any
distribution, E [Xτ ] ≥ αE [max{X1, . . . , Xn}].

For ease of exposition we will assume continuity of F in proving lower bounds and mainly
use discrete distributions to prove upper bounds. All results can be shown to hold in general
by standard arguments, to break ties among random variables and to approximate a discrete
distribution by a continuous one.

3 Sublinear Number of Samples

We begin by showing that for o(n) samples, the prophet problem with an unknown distribution
behaves like the secretary problem. As we will see in Section 3.1, a straightforward baseline can
be obtained from the optimal solution to the secretary problem, which discards a 1/e fraction of
the values and then accepts the first value that exceeds the maximum of the discarded values.
The algorithm does not require any samples, is guaranteed to stop at the maximum of the
sequence with probability 1/e, and can be shown to also provide a 1/e approximation for our
objective. Our main result in this section, which we prove in Section 3.2, shows that the bound
of 1/e is in fact best possible. This results continues to hold with o(n) samples.
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3.1 A 1/e-Approximation Without Samples

The following result translates the guarantee of 1/e for the secretary problem to a prophet
inequality for independent random variables from an unknown distribution.

Theorem 1. Let X1, X2, . . . , Xn be i.i.d. random variables drawn from an unknown distribution
F . Then there exists a (0, n)-stopping rule with stopping time τ such that

E [Xτ ] ≥ 1

e
· E [max{X1, X2, . . . , Xn}] .

The result can be shown in a straightforward way, based on the idea that the realizations
of the random variables X1, . . . , Xn can be obtained by drawing n values from their common
distribution and then permuting them uniformly at random. The classic analysis of the secretary
problem [31] implies that for each realization of the n draws, the optimal stopping rule for this
problem obtains the maximum value with probability 1/e. It thus also obtains at least a 1/e
fraction of the expected value of this maximum. We formalize this idea and prove Theorem 1 in
A.

3.2 A Matching Upper Bound

We next show that it is impossible to improve on the straightforward lower bound of 1/e.

Theorem 2. Let δ > 0. Then there exists n0 ∈ N such that for any n ≥ n0 and any (0, n)-
stopping rule with stopping time τ there exists a distribution F , not known to the stopping rule,
such that when X1, . . . , Xn are i.i.d. random variables drawn from F ,

E[Xτ ] ≤
(

1

e
+ δ

)
· E[max{X1, . . . , Xn}].

The main difficulty in showing an impossibility result of this kind is that it applies to the set of
all possible (0, n)-stopping rules, which a priori is very rich. Indeed, recall that a (0, n)-stopping
rule r can be any family of functions r1, . . . , rn where ri : Ri+ → [0, 1] for all i = 1, . . . , n. Our
main structural insight will be that we can restrict attention to a much simpler class of stopping
rules r that are in a certain sense oblivious to the values of the random variables they observe.
For random variables X1, . . . , Xn supported on arbitrarily large sets V ⊆ N, under the condition
that X1, . . . , Xi are pairwise distinct and Xi > max{X1, . . . , Xi−1}, and up to an arbitrarily
small error ε, the probability that r stops on Xi will not depend on the values of any of the
random variables X1, . . . , Xi. This is made precise by the following definition. Although it is
not needed for proving Theorem 2, we will consider the more general case of (k, n)-stopping
rules for any k ∈ N0. The structural result extends easily to the more general case, and we will
use it later to generalize Theorem 2.

Definition 1. Let ε > 0, k ∈ N0, and V ⊆ N. A (k, n)-stopping rule r is ε-value-oblivious on V
if, for all i ∈ [n], there exists qi ∈ [0, 1] such that, for all pairwise distinct s1, . . . , sk, v1, . . . , vi ∈ V
with vi > max{s1, . . . , sk, v1, . . . , vi−1}, it holds that ri(s1, . . . , sk, v1, . . . , vi) ∈ [qi − ε, qi + ε).

While value-obliviousness significantly restricts the expressiveness of a stopping rule, this
restriction turns out to be essentially without loss when it comes to the ability of achieving a
certain guarantee across all possible distributions: for any stopping rule and any ε > 0, there
exists a stopping rule with the same guarantee that is ε-value-oblivious for some infinite set
V ⊆ N. This is made precise by the following lemma, which we prove in Section 3.3.

Lemma 1. Let ε > 0 and k ∈ N0. If there exists a (k, n)-stopping rule with guarantee α, then
there exists a (k, n)-stopping rule r with guarantee α and an infinite set V ⊆ N such that r is
ε-value-oblivious on V .
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With Lemma 1 at hand it is not difficult to prove Theorem 2. For any (0, n)-stopping rule
and an appropriate value of ε, we identify a (0, n)-stopping rule r with the same performance
guarantee that is ε-value-oblivious on an infinite set V ⊆ N. We then define a distribution F with
finite support S ⊆ V such that (i) there is a large gap between the largest and second-largest
elements of S, (ii) n independent draws from F are pairwise distinct with probability close to 1,
(iii) r is ε-value-oblivious on S, and (iv) the performance guarantee of r on the distribution is
dominated by the probability of selecting the largest element of S. By (i) and (ii) the prophet
problem for the unknown distribution F is then equivalent up to a small error to a secretary
problem, and by (iii) and (iv) r behaves on F essentially like a stopping rule for the secretary
problem. A performance guarantee for r of more than 1/e would thus contradict the optimality
of this bound for the secretary problem.

Proof of Theorem 2. It suffices to show that the guarantee of any (0, n)-stopping rule is bounded
from above by 1/e + o(1), where implicitly n → ∞. To this end consider an arbitrary (0, n)-
stopping rule with guarantee α. Let ε = 1/n2. By Lemma 1 there then exists a (0, n)-stopping
rule r with guarantee α and an infinite set V ⊆ N on which r is ε-value-oblivious. Denote by τ the
stopping time of r. Let v1, . . . , vn3 , u ∈ V be pairwise distinct such that u ≥ n3 max{v1, . . . , vn3}.
For each i ∈ [n], let

Xi =


v1 with probability 1

n3 (1− 1
n2 ),

...

vn3 with probability 1
n3 (1− 1

n2 ),

u with probability 1
n2 .

We proceed to bound E[max{X1, . . . , Xn}] from below and E[Xτ ] from above. For i ∈ [n],
let X(i) denote the ith order statistic of X1, . . . , Xn, such that X(n) = max{X1, . . . , Xn}. Then

E[max{X1, . . . , Xn}] ≥ Pr[X(n) = u] · u =
1− o(1)

n
· u. (1)

On the other hand,

E[Xτ ] = Pr[X(n) = u ∧X(n−1) 6= u] · E[Xτ | X(n) = u ∧X(n−1) 6= u]

+ Pr[X(n) = u ∧X(n−1) = u] · E[Xτ | X(n) = u ∧X(n−1) = u]

+ Pr[X(n) 6= u] · E[Xτ | X(n) 6= u]

≤ 1

n

(
Pr[Xτ = X(n) | X(n) = u ∧X(n−1) 6= u] · u

+ Pr[Xτ 6= X(n) | X(n) = u ∧X(n−1) 6= u] ·O(n−3) · u
)

+O(n−2) · u+ 1 ·O(n−3) · u

≤ 1

n
Pr[Xτ = X(n) | X(n) = u ∧X(n−1) 6= u] · u+ o

( 1

n

)
· u

≤ 1

n
Pr[Xτ = X(n) | X(n) = u ∧X1, . . . , Xn distinct] · u+ o

( 1

n

)
· u, (2)

where for the first inequality we have applied the law of total expectation to E[Xτ | X(n) =
u ∧ X(n−1) 6= u] to additionally condition on whether Xτ = X(n), and for the last inequality
we have applied the law of total probability to Pr[Xτ = X(n) | X(n) = u ∧ X(n−1) 6= u] to
additionally condition on whether X1, . . . , Xn are distinct.

Given (1) and (2), to show that α ≤ 1/e+ o(1) it now suffices to show that

Pr[Xτ = X(n) | X(n) = u ∧X1, . . . , Xn distinct] ≤ 1/e+ o(1). (3)
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Note that in the event where X(n) = u and X1, . . . , Xn are pairwise distinct, the relative
ranks of X1, . . . , Xn are distributed uniformly at random. For a 0-value-oblivious stopping rule
r̂ with stopping time τ̂ it thus follows from the well-known optimal solution to the secretary
problem [31, Section 2] that

Pr[Xτ̂ = X(n) | X(n) = u ∧X1, . . . , Xn distinct] ≤ 1/e+ o(1). (4)

To show this claim for stopping rule r, which is only ε-value-oblivious with ε > 0, we construct
from r a 0-value-oblivious stopping rule r̂ and show through a coupling argument that the
probability that r stops at X(n) is bounded by the probability that r̂ stops at X(n) plus nε = 1/n.

Since r is ε-value-oblivious on V , ri(s1, . . . , si) ∈ [qi− ε, qi + ε) for all i ∈ [n], some qi ∈ [0, 1],
and all distinct s1, . . . , si ∈ V with si > max{s1, . . . , si−1}. Let r̂ be the stopping rule such
that for all s1, . . . , si ∈ V , r̂i(s1, . . . , si) = qi if si > max{s1, . . . , si−1} and r̂i(s1, . . . , si) = 0
otherwise. Denote by τ̂ the stopping time of r̂.

Let s1, . . . , sn ∈ V be distinct and assume that X1 = s1, . . . , Xn = sn. To compare the
performance of r and r̂, we can view τ and τ̂ as being coupled via n independent draws
c1, . . . , cn from the uniform distribution on [0, 1]. For every i ∈ [n], and under the con-
dition that τ ≥ i, we can assume that τ = i if and only if si > max{s1, . . . , si−1} and
ri(s1, . . . , si) > ci. Similarly, for every i ∈ [n], and under the condition that τ̂ ≥ i, we
can assume that τ̂ = i if and only if si > max{s1, . . . , si−1} and r̂i(s1, . . . , si) = qi > ci.
For i ∈ [n], let ξi be the event that occurs if and only if si > max{s1, . . . , si−1} and
ci ∈ [min{ri(s1, . . . , si), r̂i(s1, . . . , si)},max{ri(s1, . . . , si), r̂i(s1, . . . , si)}]. Then Pr[ξi] ≤ ε, while
Xτ = X(n) 6= Xτ̂ requires ξi to occur for some i ∈ [n]. Thus, by the union bound,

Pr[Xτ = X(n) | X1 = s1, . . . , Xn = sn] ≤ Pr[Xτ̂ = X(n) | X1 = s1, . . . , Xn = sn] + nε.

Since this statement holds pointwise for all distinct s1, . . . , sn ∈ V ,

Pr[Xτ = X(n) | X(n) = u ∧X1, . . . , Xn distinct] ≤

Pr[Xτ̂ = X(n) | X(n) = u ∧X1, . . . , Xn distinct] + nε. (5)

Substituting (5) into (4) yields (3), which completes the proof.

3.3 Proof of Lemma 1

The lemma claims that for every ε > 0, the existence of a (k, n)−stopping rule with performance
guarantee α implies that of a (k, n)-stopping rule r with the same performance guarantee and of
an infinite set V ⊆ N on which r is ε-value oblivious. Since we can interpret a (k, n)-stopping
rule as a (0, n′)-stopping rule with n′ = k + n that never stops on the first k values, it will be
sufficient to consider (0, n)-stopping rules with this additional constraint. We prove the lemma
through a sequence of steps that successively restrict the expressiveness of the stopping rules
we have to consider. First we show a restriction to what we call order-oblivious rules, which in
the decision to stop at random variable Xi, and conditioned on having reached Xi, may take
into account the values of random variables X1, . . . , Xi−1 but not the order in which they were
observed.

Definition 2. A (0, n)-stopping rule r is order-oblivious if for all j ∈ [n], all pairwise distinct
v1, . . . , vj ∈ R+ and all permutations π ∈ Sj−1, ri(v1, . . . , vj) = ri(vπ(1), . . . , vπ(j−1), vj).

The following result is rather intuitive.

Lemma 2. If there exists a (0, n)-stopping rule r with guarantee α, then there exists a (0, n)-
stopping rule r′ with guarantee α that is order-oblivious and that, for any i ∈ [n], never selects
Xi if r never selects Xi.
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A naive attempt to prove this lemma would be to construct an order-oblivious stopping
rule from an arbitrary stopping rule r by permuting X1, . . . , Xi−1 uniformly at random upon
observing Xi, and accepting Xi if and only if r would accept it under the random permutation.
The resulting stopping rule may, however, have a different guarantee than r because the
probability that r arrives at Xi may vary depending on the permutation. Some additional care
is therefore required.

Proof of Lemma 2. For i ∈ [n], let ∼i be the equivalence relation on Ri+ such that (v1, . . . , vi) ∼i
(w1, . . . , wi) if v1, . . . , vi−1 is a permutation of w1, . . . , wi−1 and vi = wi. Note that a stopping rule
r with stopping time τ is order-oblivious if and only if for all i ∈ [n] and v1, . . . , vi, w1, . . . , wi ∈ R+

it holds that ri(v1, . . . , vi) = ri(w1, . . . , wi) whenever (v1, . . . , vi) ∼i (w1, . . . , wi). We will refer
to the equivalence classes of ∼i as states, and will say that r arrives at s ∈ Ri+/ ∼i in the event
that τ ≥ i and X1 = v1, . . . , Xi−1 = vi−1 where [v1, . . . , vi]∼i = s.

Let r be an arbitrary stopping rule with stopping time τ , and define a stopping rule r′ with
stopping time τ ′ such that r1(v1) = r′1(v1) and for all i ∈ {2, . . . , n} and v1, . . . , vi ∈ R+ with
Pr [r arrives at [v1, . . . , vi]∼i ] > 0,

r′i(v1, . . . , vi) = Pr
[
τ = i | r arrives at [v1, . . . , vi]∼i

]
.

Since [v1, . . . , vi]∼i is invariant under permutations of the sequence v1, . . . , vi−1, r′ is indeed
order-oblivious. Moreover, for any i ∈ [n], if r never selects Xi then neither does r′. It remains
to be shown that r′ provides guarantee α.

As an intermediate step we show by induction that for all i ∈ [n] and s ∈ Ri+/ ∼i,

Pr[r arrives at s] = Pr[r′ arrives at s]. (6)

This holds trivially for i = 1, so we assume that it holds for i = k − 1 ≥ 1 and show
then that it holds for i = k. For any v1, . . . , vk ∈ R+ and s = [v1, . . . , vk]∼k , we write
v−j = (v1, . . . , vj−1, vj+1, . . . , vk−1) for the sequence of length k− 2 in which vj has been left out
and (v−j , vj) = (v1, . . . , vj−1, vj+1, . . . , vk−1, vj) for the sequence of length (k − 1) obtained by
appending vj to v−j . Then

Pr[r arrives at s]

=
k−1∑
j=1

Pr
[
r arrives at [v−j , vj ]∼k−1

]
· Pr
[
τ 6= i | r arrives at [v−j , vj ]∼k−1

]
· Pr [Xk = vk]

=
k−1∑
j=1

Pr
[
r′ arrives at [v−j , vj ]∼k−1

]
· Pr
[
τ ′ 6= i | r′ arrives at [v−j , vj ]∼k−1

]
· Pr [Xk = vk]

= Pr[r′ arrives at s],

where the first and last equalities hold by definition of ∼k−1 and the second equality by the
induction hypothesis and by definition of r′.

We now claim that

E [Xτ ] =
n∑
i=1

E [Xi | τ = i] · Pr [τ = i]

=
n∑
i=1

∫ ∞
0
· · ·
∫ ∞

0

i∏
j=1

f(vj) · vi

· 1

(i− 1)!
·
∑

π∈Si−1

Pr
[
τ = i | X1 = vπ(1), . . . , Xi−1 = vπ(i−1), Xi = vi

]
dv1 . . . dvi

9



=
n∑
i=1

∫ ∞
0
· · ·
∫ ∞

0

i∏
j=1

f(vj) · vi · Pr
[
τ = i | r arrives at [v1, . . . , vi]∼i

]
· Pr
[
r arrives at [v1, . . . , vi]∼i

]
dv1 . . . dvi

=

n∑
i=1

∫ ∞
0
· · ·
∫ ∞

0

i∏
j=1

f(vj) · vi · r′i(v1, . . . , vi) · Pr
[
r′ arrives at [v1, . . . , vi]∼i

]
dv1 . . . dvi

=
n∑
i=1

E
[
Xi | τ ′ = i

]
· Pr

[
τ ′ = i

]
= E

[
X ′τ
]
.

Indeed, the second equality can be seen to hold by imagining that X1, . . . , Xi are drawn by first
drawing i values independently and then permuting the first i− 1 of these values uniformly at
random. The fourth equality holds by definition of r′ and by (6). This completes the proof.

To further restrict the class of stopping rules from order-oblivious to value-oblivious ones
we will now construct, for every order-oblivious rule r and any ε > 0, an infinite set V ⊆ N on
which r is ε-value-oblivious. The set V will depend on r and will be obtained by starting from N
and identifying smaller and smaller subsets on which the behavior of r is more and more limited.
By induction on i ∈ [n] we will identify a set on which value-obliviousness holds with respect to
the ith random variable. We need the following definition.

Definition 3. Consider a (0, n)-stopping rule r. Let ε > 0, i ∈ [n], and V ⊆ N. Then r is
(ε, i)-value-oblivious on V if there exists q ∈ [0, 1] such that, for all pairwise distinct v1, . . . , vi ∈ V
with vi > max{v1, . . . , vi−1}, it holds that ri(v1, . . . , vi) ∈ [q − ε, q + ε).

Note that (ε, i)-value-obliviousness for all i ∈ [n] is equivalent to ε-value-obliviousness. In
establishing (ε, i)-value-obliviousness for a particular value of i we will appeal to the infinite
version of Ramsey’s theorem to show the existence of an appropriate set V .

Lemma 3 (Ramsey [43]). Let c, d ∈ N, and let H be an infinite complete d-uniform hypergraph
whose hyperedges are colored with c colors. Then there exists an infinite complete d-uniform
sub-hypergraph of H that is monochromatic.

Proof of Lemma 1. Suppose that there exists a (k, n)-stopping rule with guarantee α. By
interpreting this rule as a (0, n′)-stopping rule with n′ = k + n, and by Lemma 2, there then
exists a (0, n′)-stopping rule r that is order-oblivious and never stops on X1, . . . , Xk. We fix
ε > 0 for the entire proof and show by induction on j ∈ [n′] that there exists an infinite set
Sj ⊆ N such that, for all i ∈ [j], r is (ε, i)-value-oblivious on Sj . For j = n′, this implies that the
stopping rule r is (ε, j)-value-oblivious on Sn for all j ∈ N, and hence ε-value-oblivious on Sn.
The claim then follows by reinterpreting r as a (k, n)-stopping rule, which is possible because it
never stops on X1, . . . , Xk.

S0 = N clearly satisfies the claim for j = 0, and we proceed to show the claim for j = ` > 0
assuming that it holds for j < `. Note that it suffices to find an infinite set S` ⊆ S`−1 such that r
is (ε, `)-value-oblivious on S`, as the induction hypothesis then implies (ε, i)-value-obliviousness
on S` as a subset of Si for all i ∈ [`− 1].

Toward the application of Lemma 3, we construct a complete `-uniform hypergraph
H with vertex set S`−1. Consider any set {v1, . . . , v`} ⊆ S`−1 of cardinality ` such that
v` > max{v1, . . . , v`−1}. Note that there exists a unique u ∈ {1, 2, . . . , d1/(2ε)e} such that
r`(v1, . . . , v`) ∈ [(2u − 1) · ε − ε, (2u − 1) · ε + ε). Color the hyperedge {v1, . . . , v`} of H with
color u.

By Lemma 3 with c = d1/2εe and d = `, there exists an infinite set of vertices that
induces a complete monochromatic sub-hypergraph of H. Define S` to be such a set inducing
a monochromatic sub-hypergraph of H with color u. Set q = (2u− 1)ε and consider distinct
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v1, . . . , v` ∈ S` with v` > max{v1, . . . , v`−1}. Since the edge {v1, . . . , v`} in H has color u,
r`(vπ(1), . . . , vπ(`−1), v`) ∈ [q − ε, q + ε) for some permutation π ∈ S`−1. But since r is order-

oblivious, also r`(v1, . . . , v`−1, v`) ∈ [q − ε, q + ε). So r is (ε, `)-value-oblivious on S`. This
completes the induction step and the proof.

3.4 Extension of the Upper Bound to o(n) Samples

We conclude this section by showing that even with o(n) samples the guarantee of 1/e is still best
possible. To gain some intuition why this is true, assume that there existed an (o(n), n)-stopping
rule r with guarantee greater than 1/e by some constant. We could then obtain a (0, n)-stopping
rule r′ that interprets, for a suitable choice of n′, the first o(n′) values as samples and the
following n′ values as actual values on which it may stop, and then runs r in this setting. If we
choose n′ = (1 − o(1)) · n, the expected maxima of n and n′ draws from any distribution are
identical up to a (1− o(1)) factor. The guarantee of r would thus carry over to r′, contradicting
Theorem 2.

Corollary 1. Let δ > 0 and f : N→ N with f(n) = o(n). Then there exists n0 ∈ N such that
for any n ≥ n0 and any (f(n), n)-stopping rule with stopping time τ there exists a distribution
F , not known to the stopping rule, such that when X1, . . . , Xn are i.i.d. random variables drawn
from F ,

E[Xτ ] ≤
(

1

e
+ δ

)
· E[max{X1, . . . , Xn}].

Proof. For δ > 0, choose γ > 0 such that (1 + γ)/e ≤ 1/e + δ/2 and γ/(1 + γ) ≤ 1/e. By
Theorem 4, there exists an n1 such that for all n ≥ n1 and every (γ n, n)-stopping rule with
stopping time τ there exists a distribution F , not known to the stopping rule, with the following
property. When X1, . . . , Xn are i.i.d. random variables drawn from F , we have

E[Xτ ] ≤
(

1 + γ

e
+
δ

2

)
· E[max{X1, . . . , Xn}] ≤

(
1

e
+ δ

)
· E[max{X1, . . . , Xn}],

where the second inequality follows by our choice of γ.
Now let n0 be such that f(n) ≤ γ n for all n ≥ n0. As every (f(n), n)-stopping rule can be

interpreted as a (γ n, n)-stopping rule when n ≥ n0, the above bound for (γ n, n)-stopping rules
applies to (f(n), n)-stopping rules as well when n ≥ max{n0, n1}. This proves the claim.

4 Linear Number of Samples

The previous section has revealed a strong impossibility: even with o(n) samples it is impossible
to improve over the straightforward lower bound of 1/e ≈ 0.368 achieved by the well-known
optimal stopping rule for the secretary problem. We proceed to show that there is a sharp phase
transition when going from o(n) samples to Ω(n) samples, by giving an algorithm that uses
as few as n− 1 samples and improves the lower bound from 1/e to 1− 1/e ≈ 0.632. We also
show that the bound of 1− 1/e is in fact tight for two different classes of algorithms that share
certain features of our algorithm. This illustrates that our analysis is tight and limits the types
of approaches that could conceivably be used to go beyond 1− 1/e. We also show a parametric
upper bound for algorithms that use γ n samples for any γ ≥ 0. For algorithms that use at most
n samples this bound is equal to ln(2) ≈ 0.693 and thus nearly tight.

4.1 Warm-Up: A 1/2-Approximation with n− 1 Samples

To gain some intuition let us first consider the natural approach to sample n−1 values S1, . . . , Sn−1

from F and to use the maximum of these samples as a uniform threshold for all of the random
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Algorithm 1: Fresh-looking samples

Data: Sequence of i.i.d. random variables X1, . . . , Xn sampled from an unknown
distribution F , sample access to F

Result: Stopping time τ
S1, . . . , Sn−1 ←− n− 1 independent samples from F
S ←− {S1, . . . , Sn−1}
for t = 1, . . . , n do

if Xt ≥ maxS then return t
else

S ←− random subset of size n− 1 of {S1, . . . , Sn−1, X1, . . . , Xt}
return n+ 1

variables X1, . . . , Xn, accepting the first random variable that exceeds the threshold. It is not
difficult to see that the expected value we collect from any random variable Xt conditioned on
stopping at that random variable is at least E [max{X1, . . . , Xn}], since under this condition Xt

is the maximum of at least n i.i.d. random variables. We can thus understand the approximation
guarantee provided by this approach by understanding the probability that it stops on some
random variable. It turns out that this probability, and hence the approximation guarantee, is
1/2 + 1/(4n− 2). A detailed analysis of the approach is provided for completeness in B.

4.2 A (1− 1/e)-Approximation with n− 1 Samples

We proceed to show that it is indeed possible to obtain an improved bound of 1− (1− 1/n)n ≥
1− 1/e ≈ 0.632 with just n− 1 samples. Our algorithm improves over the naive approach that
obtains a factor of 1/2 by increasing the probability that we stop at all, while maintaining the
property that the expected value that we collect when we do stop is at least E [max{X1, . . . , Xn}].

Theorem 3. Let X1, X2, . . . , Xn be i.i.d. random variables from an unknown distribution F .
Then there exists an (n− 1, n)-stopping-rule with stopping time τ such that

E [Xτ ] =

(
1−

(
1− 1

n

)n)
· E [max{X1, . . . , Xn}] .

Note that a guarantee of 1 − 1/e − ε with Oε(n) samples follows from a result of Ehsani
et al. [25] by observing that Oε(n) samples provide a sufficiently good approximation to the
1/e-quantile of the distribution of max{X1, . . . , Xn}. Here we take a different route that yields
the bound exactly and that, more importantly, can be developed further to work with only n− 1
samples.

Suppose we were given access to n(n − 1) ∈ Θ(n2) samples. Then we could partition the
n(n−1) samples into n sets of size n−1 each, and use the maximum of the ith set as a threshold
for the ith random variable. Upon acceptance of any random variable, that random variable
would have a value equal to the expected maximum of n i.i.d. random variables, which is equal to
E [max{X1, . . . , Xn}]. Conditioned on reaching the ith random variable it would be accepted with
probability 1/n, for an overall probability of acceptance of

∑n
i=1(1−1/n)i−1 ·1/n = 1−(1−1/n)n.

Algorithm 1 mimics this approach, but instead of using n− 1 fresh samples for each of the n
random variables it constructs n− 1 fresh-looking samples for each of the n random variables
from a single set {S1, . . . , Sn−1} of n − 1 samples. The algorithms starts by drawing n − 1
samples S1, . . . , Sn−1. Then, for each time step t, it compares the current random variable Xt to
the maximum maxS of a random subset S of size n− 1 of the set {S1, . . . , Sn−1, X1, . . . , Xt−1}
containing the initial samples and the random variables seen previously. If Xt ≥ maxS, the
algorithm accepts Xt and stops. Otherwise, it continues to the next random variable.
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The key ingredient in our analysis is the following lemma, which concerns the distribution
of the unordered set of values seen before step t under the condition that the algorithm has
reached that step.

Lemma 4. If Algorithm 1 arrives at step t, the distribution of the set {S1, . . . , Sn−1, X1, . . . ,
Xt−1} is identical to the distribution of a set of n+ t− 2 fresh samples from F .

Proof. We show the claim by induction on t, and start by observing that it clearly holds for
t = 1 as {S1, . . . , Sn−1} is a set of n− 1 fresh samples from F .

Now assume that the claim holds for t = 1, . . . , t? − 1. Then, by the induction hy-
pothesis and under the condition that the algorithm arrives at step t? − 1, the set T =
{S1, . . . , Sn−1, X1, . . . , Xt?−2} has the same distribution as a set of n+ t?− 3 fresh samples from
F . We now consider the set T ′ = {S1, . . . , Sn−1, X1, . . . , Xt?−1}, which additionally includes
Xt?−1, and claim that conditioned on arriving at step t? this set is distributed like a set of
n+ t? − 2 fresh samples. Note that the latter is true before the decision to stop or not to stop at
step t? − 1 is taken. To show the claim we will argue that the decision of the algorithm to stop
or not to stop at step t? − 1 does not depend on the realization of the set T ′.

Fix any realization {y1, . . . , yn+t?−2} of T ′, and assume that the algorithm has arrived at
step t? − 1. Since F is continuous we may assume that the values y1, . . . , yn+t?−2 are pairwise
distinct, and without loss of generality that y1 < y2 < · · · < yn+t∗−2. Since T is distributed like
a set of fresh samples and Xt?−1 is a fresh sample, it must be the case that Xt?−1 is distributed
uniformly over {y1, . . . , yn+t?−2} and the elements of T are equal to the remaining values in
{y1, . . . , yn+t?−2}. The algorithm now stops at step t? − 1 if Xt?−1 = yn+t?−2, and this happens
with probability 1/n.

Proof of Theorem 3. The value E [Xτ ] obtained by Algorithm 1 can be written by summing over
all possible stopping times t = 1, . . . , n the product of the probability of stopping at Xt and the
expectation of Xt upon stopping. Writing St for the random subset used in step t, we thus have

E [Xτ ] =
n∑
t=1

(
Pr
[
Xt ≥ max{St} ∧Xj < max{Sj} for j < t

]
· E

[
Xt | Xt ≥ max{St} ∧Xj < max{Sj} for j < t

])
. (7)

For any t ∈ {1, . . . , n},

Pr
[
Xt ≥ max{St} ∧Xj < max{Sj} for j < t

]
= Pr

[
Xt ≥ max{St} | Xj < max{Sj} for j < t

]
·
∏
`<t

Pr
[
X` < max{S`} | Xj < max{Sj} for j < `

]
=

1

n

(
1− 1

n

)t−1

, (8)

where the first equality can be obtained by repeated application of the definition of conditional
probabilities and the second equality follows from Lemma 4.

Denoting by {T1, . . . , Tn−1} a set of fresh samples from F , we claim that

E
[
Xt | Xt ≥ maxSt ∧Xj < maxSj for j < t

]
= E

[
Xt | Xt ≥ max{T1, . . . , Tn−1} ∧Xj < maxSj for j < t

]
= E [Xt | Xt ≥ max{T1, . . . , Tn−1}]

= E [max{X1, . . . , Xn}] . (9)

13



Indeed the first equality holds because, under the condition that Xj < maxSj for j < t and by
Lemma 4, St is distributed like {T1, . . . , Tn−1}. The second equality holds because Xt itself is
independent of whether Xj < maxSj for j < t, and the third equality because Xt is distributed
like a fresh sample.

By substituting (8) and (9) into (7) we obtain

E [Xτ ] =

n∑
t=1

(
1

n

(
1− 1

n

)t−1
)
· E [max{X1, . . . , Xn}]

=

(
1−

(
1− 1

n

)n)
· E [max{X1, . . . , Xn}] ,

as claimed.

4.3 Going Beyond 1− 1/e

We proceed to show an upper bound of 1− 1/e for two different classes of algorithms that share
certain characteristics of Algorithm 1. This shows that our analysis of Algorithm 1 is tight and
limits the class of algorithms that could conceivably improve on the guarantee of 1− 1/e.

Algorithms in the first class, upon reaching the ith random variable, stop at this random
variable with a probability that is independent of i. This is the case for Algorithm 1, which by
Lemma 4 stops with probability 1/n upon reaching a particular random variable. The upper
bound we obtain applies even in the case where the distribution F is known, and to stopping
rules that like Algorithm 1 use dependent thresholds.

Proposition 1. Let δ > 0. Then there exists n ∈ N and a distribution F such that for any
stopping time τ for which Pr [τ = i | τ > i− 1] is independent of i,

E [Xτ ] ≤
(

1− 1

e
+ δ

)
· E [max{X1, . . . , Xn}] .

Proof. For n ≥ 3 and i ∈ [n], let

Xi =


√
n

e−2 with probability 1
n3/2 ,

1 with probability 1√
n

,

0 otherwise.

We begin by bounding E[max{X1, . . . , Xn}] from below. For every ε > 0 there exists m ∈ N
such that for all n ≥ m,

E [max{X1, . . . , Xn}]

= Pr

[
Xi =

√
n

e− 2
for some i

]
·
√
n

e− 2

+ Pr

[
Xi <

√
n

e− 2
for all i

]
· Pr

[
Xi = 1 for some i | Xi <

√
n

e− 2
for all i

]
· 1

=
(

1−
(

1− 1

n3/2

)n)
·
√
n

e− 2
+
(

1− 1

n3/2

)n
·
(

1−
(1− 1√

n
− 1

n3/2

1− 1
n3/2

)n)
· 1

≥ 1

e− 2
+ 1− ε =

e− 1

e− 2
− ε.

In bounding E [Xτ ] from above, we can restrict attention to stopping rules that always accept

a value of
√
n

e−2 and never accept a value of 0. Given the property that Pr [τ = i | τ > i− 1] is
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independent of i, any such stopping rule is characterized by the probability with which it accepts
a value of 1. Denoting this probability, which may depend on n, by qn, and the corresponding
stopping time by τqn ,

E
[
Xτqn

]
=

n∑
i=1

Pr [τqn > i− 1] · Pr [τqn = i | τqn > i− 1] · E [Xi | τqn = i]

=
n∑
i=1

(
1− qn√

n
− 1

n3/2

)i−1( qn√
n
· 1 +

1

n3/2
·
√
n

e− 2

)

=

(
1−

(
1− qn√

n
− 1

n3/2

)n)( qn/
√
n

qn/
√
n+ 1/n3/2

· 1 +
1/n3/2

qn/
√
n+ 1/n3/2

·
√
n

e− 2

)
=

(
1−

(
1− qn

√
n+ 1/

√
n

n

)n)qn√n+ 1/(e− 2)

qn
√
n+ 1/

√
n

.

We now distinguish three cases depending on the limit behavior of qn
√
n.

If lim supn→∞ qn
√
n =∞, then for every ε > 0 and m ∈ N, there exists n ≥ m such that

E
[
Xτqn

]
=

(
1−

(
1− qn

√
n+ 1/

√
n

n

)n)qn√n+ 1/(e− 2)

qn
√
n+ 1/

√
n

≤ qn
√
n+ 1/(e− 2)

qn
√
n+ 1/

√
n

≤ 1 + ε.

Indeed, the first inequality holds because (1 − (1 − 1
n(qn
√
n + 1/

√
n))n) ≤ 1, and the second

inequality because lim supn→∞ qn
√
n =∞.

If lim infn→∞ qn
√
n = 0, then for every ε > 0 and every m ∈ N, there exists n ≥ m such that

E
[
Xτqn

]
=

(
1−

(
1− qn

√
n+ 1/

√
n

n

)n)qn√n+ 1/(e− 2)

qn
√
n+ 1/

√
n

≤ (qn
√
n+ 1/

√
n)
qn
√
n+ 1/(e− 2)

qn
√
n+ 1/

√
n

≤ 1

e− 2
+ ε.

For the first inequality we have used that for y = qn
√
n+ 1/

√
n, and by Bernoulli’s inequality,

1 − (1 − y/n)n ≤ y provided that y/n ≤ 1, which is satisfied because qn ≤ 1 and n ≥ 3. The
second inequality holds because lim infn→∞ qn

√
n = 0.

Finally, if lim supn→∞ qn
√
n < ∞ and lim infn→∞ qn

√
n > 0, then there exists constants

c1, c2 with 0 < c1 ≤ c2 and infinitely many values of n such that qn
√
n+ 1/

√
n ∈ [c1, c2]. Then,

for every ε > 0 and m ∈ N, and for ε′ = ε · (c2 + 1/(e− 2))/c1, there exists n with n ≥ m and
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qn
√
n1/
√
n ∈ [c1, c2] such that

E
[
Xτqn

]
=

(
1−

(
1− qn

√
n+ 1/

√
n

n

)n)qn√n+ 1/(e− 2)

qn
√
n+ 1/

√
n

≤
(
1− e−(qn

√
n+1/

√
n) + ε′

)qn√n+ 1/(e− 2)

qn
√
n+ 1/

√
n

≤
(
1− e−(qn

√
n+1/

√
n)
)qn√n+ 1/(e− 2)

qn
√
n+ 1/

√
n

+ ε

≤ max
x≥0

((
1− e−x

)x+ 1/(e− 2)

x

)
+ ε

≤ (e− 1)2

(e− 2)e
+ ε.

For the first inequality we have used that for every ε > 0 there exists m ∈ N such that for all
n ≥ m and all x ∈ [c1, c2] it holds that 1− (1− x/n)n ≤ 1− e−x + ε. The last inequality holds
because the maximum of (1− e−x) · (x+ 1/(e− 2))/x is attained at x = 1, where it is equal to
(e− 1)2/((e− 2)e).

For every stopping time τ such that Pr [τ = i | τ > i− 1] is independent of i, and for every
ε ≥ 0 and m ∈ N, there thus exists n ≥ m such that

E [Xτ ] ≤ max

{
1 + ε,

1

e− 2
+ ε,

(e− 1)2

(e− 2)e
+ ε

}
=

(e− 1)2

(e− 2)e
+ ε.

Let f : R→ R such that for every ε ≥ 0,

f(ε) =

(e−1)2

(e−2)e + ε

e−1
e−2 − ε

.

Then, for every ε > 0, there exists n ∈ N such that

E [Xτ ] /E [max{X1, . . . , Xn}] ≤ f(ε).

Since f is continuous and limε→0 = 1− 1
e there exists, for every δ > 0, a value ε > 0 such that

f(ε) ≤ 1− 1
e + δ, and thus n ∈ N such that

E [Xτ ] /E [max{X1, . . . , Xn}] ≤ 1− 1

e
+ δ,

as claimed.

Algorithms in the second class have access to n− 1 samples S1, . . . , Sn−1 from the underlying
distribution and satisfy the following two natural conditions: (i) if the value of the first random
variable X1 is greater than all n−1 samples, they stop; and (ii) conditioned on reaching Xi, their
probability of stopping at Xi is non-decreasing in i. It is again easily verified that Algorithm 1
belongs to this class.

Proposition 2. Let δ > 0. Then there exists n ∈ N and a distribution F such that for any
(n− 1, n)-stopping rule with stopping time τ that satisfies Conditions (i) and (ii),

E [Xτ ] ≤
(

1− 1

e
+ δ

)
· E [max{X1, . . . , Xn}] .
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Proof. Let ε > 0. Let Yi be distributed uniformly on [0, ε], and let Xi = 1 + Yi with probability
1/n2 and Xi = Yi otherwise. Consider a stopping rule r with stopping time τ that satisfies
Conditions (i) and (ii). Then Pr [τ = 1] ≥ 1/n and Pr [τ = i | τ ≥ i] ≥ Pr [τ = 1] ≥ 1/n.
Moreover, it is easy to see by induction that Pr [τ ≥ i] ≤ (1− 1/n)i−1. Indeed, Pr [τ ≥ 1] = 1;
for i > 1, and assuming that the claim holds for i− 1,

Pr [τ ≥ i] = Pr [τ ≥ i− 1] · Pr [τ 6= i− 1 | τ ≥ i− 1] ≤ (1− 1/n)i−2 · (1− 1/n) = (1− 1/n)i.

It follows that

E [Xτ ] ≤
n∑
i=1

Pr [τ ≥ i] · 1

n2
+ ε ≤

n∑
i=1

(
1− 1

n

)i−1 1

n2
+ ε =

1

n

(
1−

(
1− 1

n

)n)
+ ε.

On the other hand

E [max{X1, . . . , Xn}] ≥ 1−
(

1− 1

n2

)n
,

and therefore

E [Xτ ]

E [max{X1, . . . , Xn}]
≤

1
n

(
1−

(
1− 1

n

)n)
+ ε

1−
(
1− 1

n2

)n .

The right-hand side tends to 1− 1/e as n→∞ and ε→ 0, so for every δ > 0 there exists n ∈ N
such that E [Xτ ] ≤ (1− 1/e+ δ) · E [max{X1, . . . , Xn}].

4.4 A Parametric Lower Bound

The lower bound of Theorem 3 can be generalized to a situation with γn samples when γ ∈ [0, 1].
The idea is to interpret some of the values X1, . . . , Xn as samples, so that the number of
remaining values equals the number of samples and Algorithm 1 can be applied.

Corollary 2. Let X1, X2, . . . , Xn be i.i.d. random variables from an unknown distribution F .
Let γ ∈ [0, 1] such that γn+ n is an even number. Then there exists an (γn, n)-stopping-rule
with stopping time τ such that

E [Xτ ] ≥ 1 + γ

2
·
(

1− 1

e

)
· E [max{X1, . . . , Xn}] .

Proof. Let n′ = 1+γ
2 n, and note that n′ ∈ N. Define S′i = Si for all i ∈ [γn], S′γn+i = Xi for all

i ∈ [n′ − γn], and X ′i = Xn′−γn+i for all i ∈ [n′]. Note that X ′n′ = Xn, so this assignment is well-
defined. We use Algorithm 1 with stopping time τ on X ′1, . . . , X

′
n′ with samples S′1, . . . , S

′
n′−1.

Then by applying Theorem 3 we get

E
[
X ′τ
]
≥
(

1− 1

e

)
· E
[
max{X ′1, . . . , X ′n′}

]
≥ 1 + γ

2
·
(

1− 1

e

)
· E [max{X1, . . . , Xn}] ,

as claimed.

4.5 A Parametric Upper Bound

While an improvement over the bound of 1 − 1/e ≈ 0.632 remains conceivable via more
complicated stopping rules, such an improvement cannot go beyond ln(2) ≈ 0.693. This is a
consequence of the following generalization of Theorem 2, which provides a parametric upper
bound for stopping rules that have access to γ n samples for some γ ≥ 0. We prove this result
by generalizing the proof of Theorem 2, and bounding the performance of the algorithm by
bounding the probability that it accepts the maximum of the entire sequence of (1 + γ)n values.
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Figure 2: Visualization of the parametric lower bound (solid) and the parametric upper bound (dashed).

Theorem 4. Let δ > 0, γ ∈ Q+. Then there exists n0 ∈ N such that for any n ≥ n0 and
any (γ n, n)-stopping rule with stopping time τ there exists a distribution F , not known to the
stopping rule, with the following property. When X1, . . . , Xn are i.i.d. random variables drawn
from F ,

E[Xτ ] ≤ (b(γ) + δ) · E[max{X1, . . . , Xn}],

where

b(γ) =

{
1+γ
e if 1

e ≥
γ

1+γ ,

−γ · log γ
1+γ otherwise.

Proof. We will restrict attention to n ∈ N such that γn ∈ N. It suffices to show that the
guarantee of any (γn, n)-stopping rule is bounded from above by b(γ) + o(1), where implicitly
n→∞. To this end, consider an arbitrary (γn, n)-stopping rule with guarantee α. Let ε = 1/n2.
By Lemma 1 there then exists an infinite set V ⊆ N on which r is ε-value-oblivious. Let
v1, . . . , vn3 , u ∈ V be pairwise distinct such that u ≥ n3 max{v1, . . . , vn3}. For each i ∈ [n], let

Xi =


v1 with probability 1

n3 · (1− 1
n2 ),

...

vn3 with probability 1
n3 · (1− 1

n2 ),

u with probability 1
n2 .

We proceed to bound E[max{X1, . . . , Xn}] from below and E[Xτ ] from above. Let X(i)

denote ith order statistic of X1, . . . , Xn, such that X(n) = max{X1, . . . , Xn}. Then

E[max{X1, . . . , Xn}] ≥ Pr[X(n) = u] · u =
1− o(1)

n
· u. (10)

For i ∈ [(1 + γ)n], let

Ri =

{
Si if i ≤ γn,

Xi−γn otherwise,

and let τ ′ = τ + γn be the stopping time of r viewed as a (0, (1 + γ)n)-stopping rule on

18



R1, . . . , R(1+γ)·n. Then, analogously to the proof of Theorem 2

E[Xτ ] = Pr[R((1+γ)·n) = u ∧R((1+γ)·n−1) 6= u] · E[Rτ ′ | R((1+γ)·n) = u ∧R((1+γ)·n−1) 6= u]

+ Pr[R((1+γ)·n) = u ∧R((1+γ)·n−1) = u] · E[Rτ ′ | R((1+γ)·n) = u ∧R((1+γ)·n−1) = u]

+ Pr[R((1+γ)·n) 6= u] · E[Rτ ′ | R((1+γ)·n) 6= u]

≤ 1 + γ

n
·
(

Pr[Rτ ′ = R((1+γ)·n) | R((1+γ)·n) = u ∧R((1+γ)·n−1) 6= u] · u

+ Pr[Rτ ′ 6= R((1+γ)·n) | R((1+γ)·n) = u ∧R((1+γ)·n−1) 6= u] ·O(n−3) · u
)

+O(n−2) · u+ 1 ·O(n−3) · u

≤ 1 + γ

n
· Pr[Rτ ′ = R((1+γ)·n) | R((1+γ)·n) = u ∧R((1+γ)·n−1) 6= u] · u+ o

(
1

n

)
· u

≤ 1 + γ

n
· Pr[Rτ ′ = R((1+γ)·n) | R((1+γ)·n) = u ∧R1, . . . , R(1+γ)·n are distinct] · u

+ o

(
1

n

)
· u. (11)

Given (10) and (11), to show α ≤ b(γ) + o(1), it suffices to show that

Pr[Rτ ′ = R((1+γ)·n) | R((1+γ)·n) = u∧R1, . . . , R(1+γ)·n are distinct] ≤ b(γ)/(1 + γ) + o(1). (12)

Note that in the event where R((1+γ)·n) = u and R1, . . . , R(1+γ)·n are distinct, the relative ranks
of R1, . . . , R(1+γ)·n are distributed uniformly at random. The optimal stopping rule for accepting
the value with the largest relative rank is known to set, for some x ∈ [0, 1], qi = 0 for all
i < x · (1 + γ) · n and qi = 1 for all i ≥ x · (1 + γ) · n [32]. Then, for any (0, (1 + γ) · n)-stopping
rule r̂ with stopping time τ̂ that does not accept any of the values X1, . . . , Xγn,

Pr[Xτ̂ = R((1+γ)·n) | R((1+γ)·n) = u ∧R1, . . . , R(1+γ)·n are distinct] = −x · log x+ o(1),

which subject to x ≥ γ/(1 + γ) is maximized for

x = max

{
1

e
,

γ

1 + γ

}
.

Thus

Pr[Xτ̂ = R((1+γ)·n) | R((1+γ)·n) = u ∧R1, . . . , R(1+γ)·n are distinct] ≤ b(γ)/(1 + γ) + o(1), (13)

where

b(γ) =

{
1+γ
e if 1

e ≥
γ

1+γ ,

−γ · log γ
1+γ otherwise.

Analogously to the proof of Theorem 2, r can be coupled with a (0, (1 + γ) · n)-stopping rule r̂
as above such that

Pr[Xτ ′ = R((1+γ)·n) | R((1+γ)·n) = u ∧R1, . . . , R(1+γ)·n are distinct] ≤

Pr[Xτ̂ = R((1+γ)·n) | R((1+γ)·n) = u ∧R1, . . . , R(1+γ)·n are distinct] + nε. (14)

Then substituting (14) into (13) yields (12), completing the proof.

A visualization of the upper bound of Theorem 4 and the lower bound of Corollary 2 is
shown in Figure 2. Note that the function b defined in Theorem 4 is continuous and that
b(1) = ln(2) ≈ 0.693. Moreover, b meets the tight bound of approximately 0.745 due to Correa
et al. [15], which implies an upper bound in the setting where the distribution is unknown, at
γ ≈ 1.32.
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5 Superlinear Number of Samples

Our final result is that we can in fact match the optimal guarantee achievable by a stopping rule
that knows the distribution, up to any ε > 0, if we have access to Oε(n

2) samples.

Theorem 5. For every ε > 0, there exists an nε ∈ N such that the following holds for all
n ≥ nε. Let X1, . . . , Xn be i.i.d. random variables drawn from an unknown distribution F . Then
there exists an algorithm for choosing a stopping time τ̃ that uses O(n2) samples from the same
distribution with

E [Xτ̃ ] ≥ (β−1 − ε) · E [max{X1, . . . , Xn}] ,

where β−1 ≈ 0.745 is the guarantee shown by Correa et al. [15].

As our algorithm is related to that of Correa et al. [15], we first recall how that algorithm
works. It computes a decreasing sequence x1, x2, . . . , xn. As n →∞, it can be shown that xi
approaches y(i/n)1/(n−1) pointwise for all i ∈ [n] [39, Theorem C], where y is the unique solution
to the following ordinary differential equation

y′ = y · ln(y)− y − β + 1 and y(0) = 1,

where β ≈ 1.3414 ≈ 1/0.745. This solution turns out to be decreasing and convex. Then,
conditional on reaching random variable Xi, it chooses a quantile qi ∈ [1−xi−1, 1−xi] according
to the probability density function

fi(q) =
(n− 1)(1− q)n−2

αi
where αi =

∫ 1−xi

1−xi−1

(n− 1)(1− r)n−2 dr ,

and sets F−1(1− q) as threshold for accepting Xi.
Now let τ be the stopping time implied by the algorithm, and for q ∈ [0, 1] define R(q) =

E[X | X ≥ F−1(1 − q)] to be the expected value of random variable X conditioned on X
exceeding threshold F−1(1− q). It can then be shown that

E [Xτ ] =

n∑
i=1

Pr [τ ≥ i]
∫ 1−xi

1−xi−1

fi(q)R(q)q dq

=

n∑
i=1

ρ · αi
∫ 1−xi

1−xi−1

fi(q)R(q)q dq =
ρ

n
· E [max{X1, . . . , Xn}] , (15)

where the ith term in the sum can be viewed as the contribution of Xi to the expectation E [Xτ ],
and ρ/n ≥ β−1.

To simplify the presentation of our result, we first show that setting deterministic thresholds
is also sufficient to achieve a guarantee of β−1. In particular, for all i ∈ [n] define q̄i such that

q̄i =

∫ 1−xi

1−xi−1

fi(q)q dq .

Let τ̄ be the stopping time of the algorithm that sets deterministic thresholds F−1(1− q̄i).
The following lemma shows that we can also consider this algorithm.

Lemma 5. Let X1, . . . , Xn be i.i.d. random variables drawn from a known distribution F . Then
for all i ∈ [n], we have

R(q̄i) · q̄i ≥
∫ 1−xi

1−xi−1

fi(q)R(q)q dq
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Proof. The left-hand side is E[X|X > Td] · Pr [X > Td], where Td is the deterministic threshold
F−1(1− q̄i) that corresponds to q̄i. The right-hand side is E[X|X > Tr] ·Pr [X > Tr], where Tr is
the randomized threshold that arises from first drawing q ∈ [1−xi−1, 1−xi] with probability fi(q)
and then setting threshold F−1(1− q). We have chosen q̄i so that Pr [X > Td] = Pr [X > Tr], it
thus suffices to show that E[X|X > Td] ≥ E[X|X > Tr].

Let us prove the stronger statement that for all t, Pr [X > t | X > Td] ≥ Pr [X > t | X > Tr].
Indeed, if t > Td the claimed inequality becomes

Pr [X > t]

Pr [X > Td]
≥ Pr [X > max{t, Tr}]

Pr [X > Tr]
,

which holds because Pr [X > Td] = Pr [X > Tr] and Pr [X > t] ≥ Pr [X > max{t, Tr}]. On the
other hand, if t ≤ Td, then Pr [X > t | X > Td] = 1 and the claimed inequality applies as
well.

By applying Lemma 5 to (15), we obtain

E [Xτ̄ ] =
n∑
i=1

Pr [τ̄ ≥ i] ·R(q̄i) · q̄i

=
n∑
i=1

ρ · αi ·R(q̄i) · q̄i ≥
ρ

n
· E [max{X1, . . . , Xn}] , (16)

where we used that conditioned on reaching step i both τ and τ̄ accept Xi with the same
probability and so Pr [τ̄ ≥ i] = Pr [τ ≥ i] = ρ · αi.

The algorithm that achieves the bound claimed in Theorem 5 starts by skipping some random
variables until the acceptance probability q̄i of algorithm τ̄ becomes sufficiently large, say δ/n
where 0 < δ < 1 is some constant. Such a step exists for sufficiently large n, because if all
acceptance probabilities q̄1, . . . , q̄n were at most 1/n, Pr [τ̄ ≤ n] would be at most 1−1/e ≈ 0.632
in the limit for n→∞, contradicting Pr [τ̄ ≤ n]→ β−1 ≈ 0.745 [15].

So assume that ` is the first such step with q̄` ≥ δn. From then on, it uses the empirical
distribution function of the samples to estimate the quantiles q̄`, . . . , q̄n used by the optimal
algorithm that knows the distribution on the remaining random variables. The algorithm then
accepts random variable Xi conditional on reaching it with probability q̃i, where q̃i is its estimate
of q̄i. More formally, when the original algorithm chooses threshold T̄i = F−1(1− q̄i) so that
1− F (T̄i) = q̄i our algorithm will choose T̃i = F̃−1(1− q̄i) where F̃ is the empirical distribution
function, and q̃i = 1− F (T̃i). Denote the stopping time of this algorithm by τ̃δ.

The reason why we skip the first few random variables is because the initial acceptance
probability of the optimal algorithm that knows the distribution is of the order of 1/n2, therefore
with n2 samples we cannot get a reliable estimate of the corresponding quantile.

We will lower bound the performance of our algorithm τ̃δ in terms of the performance of
algorithm τ̄ through an intermediate algorithm, whose stopping time we denote by τ̄δ, that also
skips the first few random variables but then uses the actual quantiles q̄`, . . . , q̄n.

Lemma 6. For every ε > 0, there exists an nε ∈ N such that the following holds for all n ≥ nε.
Let X1, . . . , Xn be i.i.d. random variables drawn from an unknown distribution F . Then, for any
δ such that 0 < δ < 1/2,

E [Xτ̄δ ] ≥ (1− 2δ) · E [Xτ̄ ] .

Proof of Lemma 6. Note that if ` = 1 then there is nothing to show as τ̄δ and τ̄ are identical.
Otherwise, ` ≥ 2, q̄` ≥ δ/n, and q̄`−1 ≤ δ/n, which implies that 1− x`−2 < δ/n.

The expected value achieved by the algorithm that skips the first few random variables until
the acceptance probability becomes δ/n and then uses the actual quantiles q̄`, . . . , q̄n is

E [Xτ̄δ ] =
n∑
i=`

Pr [τ̄δ ≥ i] ·R(q̄i) · q̄i ≥
n∑
i=`

Pr [τ̄ ≥ i] ·R(q̄i) · q̄i .
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while

E [Xτ̄ ] =

`−1∑
i=1

Pr [τ̄ ≥ i] ·R(q̄i) · q̄i +
n∑
i=`

Pr [τ̄ ≥ i] ·R(q̄i) · q̄i .

Now observe that

`−1∑
i=1

Pr [τ̄ ≥ i] ·R(q̄i) · q̄i ≤

(
`−2∑
i=1

Pr [τ̄ ≥ i] + Pr [τ̄ ≥ `− 1]

)
·R(q̄`) · q̄`

≤ 2 ·
`−2∑
i=1

Pr [τ̄ ≥ i] ·R(q̄`) · q̄`

= 2 · ρ ·

(
`−2∑
i=1

αi

)
·R(q̄`−1) · q̄`−1

= 2 · ρ ·
(∫ 1−x`−2

0
(n− 1)(1− q)n−2 dq

)
·R(q̄`) · q̄`

= 2 · ρ · (1− x`−2
n−1) ·R(q̄`) · q̄`

≤ 2 · ρ · (1− (1− δ/n)n−1) ·R(q̄`) · q̄`
≤ 2 · ρ · (1− e−δ) ·R(q̄`)q̄`

≤ 2 · ρ · δ ·R(q̄`)q̄` ,

where for the first inequality we used that R(q)q =
∫ q

0 F
−1(1− r) dr is monotone, for the second

inequality we used that Pr [τ̄ ≥ `− 1] ≤ Pr [τ̄ ≥ `− 2], and for the third inequality we used that
x`−2 ≥ 1− δ/n.

On the other hand,

n∑
i=`

Pr [τ̄ ≥ i]R(q̄i)q̄i ≥
n∑
i=`

Pr [τ̄ ≥ i]R(q̄`)q̄`

= ρ

(
n∑
i=`

αi

)
R(q̄`)q̄`

= ρ ·
∫ 1

1−x`−1

(n− 1)(1− q)n−2 dq ·R(q̄`)q̄`

= ρ ·
(

1−
∫ 1−x`−1

0
(n− 1)(1− q)n−2 dq

)
·R(q̄`)q̄`

= ρ

(
1−

`−1∑
i=1

αi

)
·R(q̄`)q̄`

=

(
ρ−

`−1∑
i=1

Pr [τ̄ ≥ i]

)
·R(q̄`)q̄`

≥ ρ · (1− 2δ) ·R(q̄`)q̄` ,

where we again used the monotonicity of R(q)q for the first inequality and the upper bound for∑`−1
i=1 Pr [τ̄ ≥ i] derived above for the second inequality.
This shows that the ratio between the two terms is at most 2δ/(1−2δ), which in turn implies

that

E [Xτ̄ ] ≤
(

1 +
2δ

1− 2δ

)
E [Xτ̄δ ] ,

and after rearranging shows the claim.
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Lemma 7. For every ε′ > 0 and δ ∈ (0, 1/2), there exist ε′′ >, γ > 0, and nε′ ∈ N such that
the following holds for all n ≥ nε′. Let X1, . . . , Xn be i.i.d. random variables drawn from an
unknown distribution F . Then with k ≥ n2 ln(2/ε′′)/(2γ2) samples it holds that

E [Xτ̃δ ] ≥ (1− ε′) · E [Xτ̄δ ] .

To prove this lemma, we make use of the following auxiliary lemma, which can be proven
using the Dvoretzky–Kiefer–Wolfowitz inequality [24].

Lemma 8. Fix ε′′ > 0 and γ > 0. Then, with k ≥ n2 ln(2/ε′′)/(2γ2) samples,

Pr

[
max
i
|q̄i − q̃i| >

γ

n

]
< ε′′ .

Proof. Let F denote the true underlying distribution, and let F̃ denote the empirical cumulative
density function from k samples. With k ≥ n2 ln(2/ε′)/(2γ2) samples, the Dvoretzky–Kiefer–
Wolfowitz inequality [24] states that

Pr

[
sup
x
|F̃ (x)− F (x)| > γ

n

]
≤ 2 · e−2k(γ/n)2 ≤ ε′′ .

So with probability at least 1− ε′′ we have that for all pairs q̄i and q̃i = 1− F (T̃i),

q̃i = 1− F (T̃i) ≤ 1− F̃ (T̃i) +
γ

n
= 1− (1− q̄i) +

γ

n
= q̄i +

γ

n
, and

q̃i = 1− F (T̃i) ≥ 1− F̃ (T̃i)−
γ

n
= 1− (1− q̄i)−

γ

n
= q̄i −

γ

n
,

as claimed.

Proof of Lemma 7. Given ε′ > 0 and δ ∈ (0, 1/2) choose ε′′, ε′′′, γ > 0 such that γ ≤ δ,
γ ≤ (1− β−1) · ε′′′ ≈ 0.255 · ε′′′, and (1− ε′′) · (1− ε′′′) · (1− γ/δ) ≥ 1− ε′.

Towards relating E[Xτ̃δ ] and E[Xτ̄δ ], denote by ω the event that maxi |q̄i − q̃i| ≤ γ/n. Note
that we can lower-bound the expected value obtained by our algorithm by only considering the
case that ω occurs and then summing over all steps:

E[Xτ̃δ ] ≥ Pr [ω] ·
n∑

i=`+1

Pr [τ̃δ ≥ i | ω] · Pr
[
Xi ≥ F̃−1(1− q̄i) | ω ∧ τ̃δ ≥ i

]
· E[Xi | ω ∧ τ̃δ ≥ i ∧Xi ≥ F̃−1(1− q̄i)]. (17)

Fix some i ∈ [n] with i ≥ `+1. We first bound Pr [τ̃δ ≥ i | ω] with respect to Pr [τ̄δ ≥ i | ω] =
Pr [τ̄δ ≥ i]. First note that, for any j ≤ `, it holds that Pr [τ̄δ = j] = Pr [τ̃δ = j] = 0. Furthermore
note that, for all `+ 1 ≤ j < i and conditioned on ω, we have |q̄j − q̃j | ≤ γ/n. Thus, conditioned
on ω, the probability that precisely one of τ̄δ, τ̃δ is j is bounded by γ/n. By the union bound,
we therefore have

Pr [τ̃δ ≥ i | ω] ≥ Pr [τ̄δ ≥ i]− (i− `− 1) · γ/n ≥ Pr [τ̄δ ≥ i]− i · γ/n.

Now note that Pr [τ̄δ ≥ i] ≥ Pr [τ̄δ > n], i.e., the probability that τ̄δ stops at step i or later is
lower bounded by the probability that τ̄δ does not stop at all. Moreover, Pr [τ̄δ > n] ≥ Pr [τ > n],
i.e., the probability that τ̄δ does not stop at all is at least the probability that τ does not stop at
all. Since Pr [τ > n] = 1− β−1 ≈ 0.255, if we choose γ such that γ ≤ (1− β−1) · ε′′′, then

Pr [τ̃δ ≥ i | ω] ≥ (1− ε′′′) · Pr [τ̄δ ≥ i] . (18)
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Next, we bound Pr
[
Xi ≥ F̃−1(1− q̄i) | ω ∧ τ̃δ ≥ i

]
· E[Xi | ω ∧ τ̃δ ≥ i ∧Xi ≥ F̃−1(1 − q̄i)],

that is, the value extracted from Xi conditioned on ω and arriving in step i. We obtain

Pr
[
Xi ≥ F̃−1(1− q̄i)

∣∣ ω ∧ τ̃δ ≥ i] · E[Xi | ω ∧ τ̃δ ≥ i ∧Xi ≥ F̃−1(1− q̄i)]

=E
[∫ 1

q̃i

F−1(q) dq
∣∣∣ ω ∧ τ̃δ ≥ i]

=E
[∫ 1

q̄i

F−1(q) dq −
∫ q̃i

q̄i

F−1(q) dq
∣∣∣ ω ∧ τ̃δ ≥ i]

≥E
[(

1− γ

δ

)
·
∫ 1

q̄i

F−1(q) dq
∣∣∣ ω ∧ τ̃δ ≥ i]

=
(

1− γ

δ

)
·
∫ 1

q̄i

F−1(q) dq

=
(

1− γ

δ

)
· Pr

[
Xi ≥ F−1(1− q̄i) | τ̄δ ≥ i

]
· E[Xi | τ̄δ ≥ i ∧Xi ≥ F−1(1− q̄i)], (19)

where in the third-to-last step we used that F−1(q) is monotonically increasing in q. Note that
the inequality holds independently of how q̄i and q̃i are ordered.

We now substitute the two bounds given in (18) and (19) into (17) and apply Lemma 8 to
obtain

E[Xτ̃δ ] ≥ Pr [ω] ·
(
1− ε′′′

)
· (1− γ

δ
) ·E[Xτ̄δ ] ≥ (1−ε′′) · (1−ε′′′) · (1− γ

δ
) ·E[Xτ̄δ ] ≥ (1−ε′) ·E[Xτ̄δ ] ,

as claimed.

We are now ready to prove the theorem.

Proof of Theorem 5. First choose ε′ > 0 and δ ∈ (0, 1/2) such that (1 − ε′)(1 − 2δ) ≥ 1 − ε.
Then, by combining Lemma 6 with Lemma 7, we obtain that there exist ε′′, γ > 0 such that for
sufficiently large n, with k ≥ n2 ln(2/ε′′)/(2γ2) = O(n2) samples,

E[Xτ̃δ ] ≥ (1− ε′)(1− δ) · E[Xτ̄ ]

≥ (1− ε) · E[Xτ̄ ]

≥ (β−1 − ε) · E[max{X1, . . . , Xn}],

where the last step follows from (16).

Appendix A Proof of Theorem 1

Let τ be the stopping time corresponding to the optimal stopping rule for the secretary problem,
which rejects a certain fraction of the random variables and uses their maximum as a threshold for
the remaining ones. Since X1, X2, . . . , Xn are drawn independently from the same distribution,
we can assume that their realizations are obtained by independently drawing n values from
the distribution and then ordering them according to a random permutation π. Denoting the
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Algorithm 2: Single threshold algorithm

Data: Sequence of i.i.d. random variables X1, . . . , Xn sampled from an unknown
distribution F , sample access to F

Result: Stopping time τ
τ ←− n
S1, . . . , Sn−1 ←− n− 1 samples from F
for t = 1, . . . , n− 1 do

if Xt ≥ max{S1, . . . , Sn−1} then
τ ←− t
Break

return τ

density of the distribution from which X1, . . . , Xn are drawn by f ,

E[Xτ ] =

∫ ∞
0
· · ·
∫ ∞

0

n∏
i=1

f(vi) · Eπ[vπ(τ)] dv1 · · · dvn

≥
∫ ∞

0
· · ·
∫ ∞

0

n∏
i=1

f(vi) · Prπ[vπ(τ) = max{v1, . . . , vn}] ·max{v1, . . . , vn} dv1 · · · dvn

≥ 1

e
·
∫ ∞

0
· · ·
∫ ∞

0

n∏
i=1

f(vi) ·max{v1, . . . , vn} dv1 · · · dvn

=
1

e
· E [max{X1, . . . , Xn}] ,

where the second inequality holds because the values v1, . . . , vn have been randomly ordered and τ
is thus guaranteed to select max{v1, . . . , vn} with probability at least 1/e for any realization [31].
This proves the claim.

Appendix B A 1/2-approximation with n− 1 samples

We formalize the discussion in Section 4.1. We show that if the stopping rule has access to
n− 1 samples, then we can simply take the maximum of these samples as a single, non-adaptive
threshold for all random variables to obtain a factor 1/2-approximation.

Theorem 6. Let X1, X2, . . . , Xn be i.i.d. draws from an unknown distribution F . Then there
exists a (n− 1, n)-stopping-rule with stopping time τ such that

E [Xτ ] ≥ 1

2
· E [max{X1, . . . , Xn}] .

To prove Theorem 6 we will analyze a slight variation of the algorithm described above,
Algorithm 2, which only uses the maximum of n− 1 samples as a threshold for the first n− 1
random variables and stops on the nth random variable with certainty. The advantage of this is
that it becomes even clearer when and why our analysis is tight.

Proof of Theorem 6. The expected value achieved by Algorithm 2 is the sum over all time steps
i = 1, . . . , n of the product of the probability of stopping at this time step and the expected
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value of the random variable conditioned on being above the threshold

E [Xτ ] =
n−1∑
i=1

(
E [Xi | τ = i] · Pr [τ = i]

)
+ E [Xn] · Pr [τ = n]

≥
n−1∑
i=1

(
E [Xi | τ = i] · Pr [τ = i]

)
. (20)

We stop at time step i if the maximum among the n − 1 samples and the first i random
variables happens to be the ith random variable, and if, conditioned on this, the second maximum
is among the n− 1 samples and not the other i− 1 random variables. Hence,

Pr [τ = i] =
1

n− 1 + i
· n− 1

n− 2 + i

Summing this over all i from 1 to n− 1 shows that the probability of stopping at one of the
first n− 1 random variables is precisely

n−1∑
i=1

Pr [τ = i] =
n−1∑
i=1

1

n− 1 + i
· n− 1

n− 2 + i
=

1

2
. (21)

We conclude the proof by showing that for all i = 1, . . . , n− 1 the conditional expectation
E [Xi | τ = i] is at least E [max{X1, . . . , Xn}]. Let T = max{S1, . . . , Sn}. The algorithm stops
at time step i if Xi ≥ T > max{X1, . . . , Xi−1}. So under this event Xi is the maximum of
n− 1 + i random variables. And so

E [Xi | τ = i] = E [max of n− 1 + i i.i.d. RVs] ≥ E [max{X1, . . . , Xn}] . (22)

Substituting (21) and (22) into (20) completes the proof.

As we have argued in the proof of Theorem 6, the probability that Algorithm 2 stops on one
of the first n− 1 variables is precisely 1/2. The two potentially lossy steps are that we dropped
the contribution from the final random variable, and that we lower bounded the contribution
from each of the first n− 1 random variables by E [max{X1, . . . , Xn}].

It turns out that both of the potentially lossy steps are in fact lossless in the limit as n→∞
if F is the exponential distribution.

Proposition 3. Let X1, . . . , Xn be drawn independently from the distribution with F (x) = 1−e−x.
Then for the stopping time τ determined by Algorithm 2,

lim
n→∞

E [Xτ ]

E [max{X1, . . . , Xn}]
=

1

2
.

Proof. It is a well-known fact that the maximum of n independent, exponentially distributed
random variables X1, . . . , Xn is equal to the nth harmonic number, i.e., that

E [max{X1, . . . , Xn}] = Hn.

As we have argued in the proof of Theorem 6, the expected value obtained by Algorithm 2
can be written as

E [Xτ ] =

n−1∑
i=1

(
Hn−1+i ·

1

n− 1 + i
· n− 1

n− 2 + i

)
+

1

2
.
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Tedious calculations allow to express the expected value via the digamma function ψ(0) and the
Euler-Mascheroni constant γ as

E [Xτ ] = ψ(0)(n)− 1

2
H2n−2 + γ + 1,

which can be used to show that

lim
n→∞

E [Xτ ]

E [max{X1, . . . , Xn}]
= lim

n→∞

ψ(0)(n)− 1
2H2n−2 + γ + 1

Hn
=

1

2
.

This proves the claim.
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