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These lecture notes provide a brief introduction to some topics in dynamical systems

theory, suitable for a short course.

1) Dynamical systems: continuous and discrete time.

2) Linear stability analysis and beyond: hyperbolicity, structural stability.

3) Bifurcations: what happens when a state becomes unstable.

4) Symbolic dynamics: turning orbits into strings of symbols.

5) Chaos: when the future of a deterministic system cannot be determined.

The presentation is informal and hands-on. The accompanying supplementary notes

by F Vivaldi provide some background material in analysis and linear algebra, and also

deal with one-dimensional flows, which are not part of this course. Suggestions for further

reading will be found in the last section.
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1 Dynamical systems

Informally, a dynamical system is a system whose states are represented by the points

of a set; these states evolve with time according to a deterministic law, specified by a

differential or difference equation. The system is not subjected to the effects of noise1.

For instance, let us consider a single particle in one-dimension, subjected to a force.

The state of this system is determined by the particle’s position and velocity; the time-

evolution is governed by Newton’s law F = ma, which can be written as a pair of first-

order ordinary differential equations: ẋ = y, ẏ = F(x)/m. This law determines the state at

time t provided the state at time 0 is given. This is a dynamical system on the set R2; the

time is a real number.

Let M be any set and f : M → M be any function. Choose x0 ∈ M, and, using the

first-order difference equation xt+1 = f (xt), t > 0, define recursively an infinite sequence

(x0,x1,x2, . . .) of elements of M. This is a dynamical system on M; the time is an integer.

Definition 1.1 A dynamical system consists of a set M, called the phase space, and a

one-parameter family of transformations Φt : M → M such that, for all x ∈ M,

i) Φ0(x) = x;

ii) Φt(Φs(x)) = Φt+s(x), for all s, t > 0.

If t ∈R (respectively, t ∈Z), then we speak of a continuous time (respectively, discrete time)

dynamical system.

The family {Φt} is a semi-group of transformations. If ii) holds also for negative t,s, then

we have a group, and the system is said to be invertible. The set Γ(x0) = {Φt(x0), t > 0}
is called the (forward) orbit of the point x0, called the initial condition.

For discrete time dynamical systems, the set M can be quite arbitrary. For continuous

time, or for systems of physical origin, M is a manifold2. For continuous time, the family

of functions Φt is called a flow.

1In presence of noise, we speak of a stochastic dynamical system.
2A set that, locally, looks like Rn for some n, see page 16.
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1.1 Flows

We begin with some examples of continuous-time dynamical systems.

Example 1.1 The harmonic oscillator. This is one of the simplest dynamical system of

mathematical physics, yet a very significant one. The phase space is M = R2; the basic

information is displayed below3.

equations

ẋ = y

ẏ = −ω2x

initial condition

x(0) = x0

y(0) = y0

solution

x(t) = x0 cos(ωt)+
y0

ω
sin(ωt)

y(t) = −ωx0 sin(ωt)+ y0 cos(ωt)

with Φt(x0,y0) = (x(t,x0,y0),y(t,x0,y0)).

The phase space space foliates into invariant ellipses. The figure on the right illustrates

the geometrical meaning of the associative property ii) in definition 1.1.

(x(t),y(t))

x

y
(x  ,y  )0 0

0

s

s+t

Φ

Φ

Φs+t

s

t

The definition of a dynamical systems requires that, for any initial condition in phase

space, the orbit must be unique and defined for all future times. This is not guaranteed

for the solutions of a differential equation ẋ = f (x), and so there are differential equations

which cannot be regarded as dynamical systems.

3The dot denotes differentiation with respect to time.
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Example 1.2 The solutions are not defined for all times. The system

ẋ = x2 x(0) = x0 (1)

has solution

x(t,x0) =
x0

1− x0t
.

For x0 6= 0, this function is not defined over the whole R. It is defined in the interval

(−∞,1/x0) for x0 > 0, and (1/x0,∞) for x0 < 0. This is because the real function f (x) = ẋ

grows too rapidly near infinity, so that it is possible to reach infinity, or come back from

infinity, in a finite time.

Example 1.3 Lack of uniqueness. The differential equation

ẋ = 2
√

|x|, with x(0) = 0

has two distinct solutions for t > 0, namely x(t) = 0 and x(t) = t2. This is because the

function f (x) = ẋ is not Lipschitz continuous at the equilibrium point x = 0 (the constant

solution), and hence it does not vanish rapidly enough near it. So it is possible to reach

the equilibrium point, or move away from it, in a finite time.

To ensure uniqueness of solutions, it suffices to require that f be of class C1.

Example 1.4 Forced van der Pol oscillator.

ẋ = x−σy− x(x2 + y2)

ẏ = σx+ y− y(x2 + y2)− γ.
(2)

For any value of the real parameters σ ,γ ,

this equation defines a vector field v(z)= ż=

(ẋ, ẏ) in R2. Plotting this vector field (here

for σ = 0.2 and γ = 0.3) gives already an

impression of the behaviour of the solutions.

Dynamical systems theory is about under-

standing how the flow relates to the vector

field.
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For special parameter values we are able to compute the flow analytically. If γ = 0,

then using polar coordinates x = r cos(ϕ), y = r sin(ϕ), the equations of motion read

ṙ = r− r3, ϕ̇ = σ . (3)

The special solution r(t) = 0 yields the constant solution z(t) = (x(t),y(t)) = (0,0) (an

equilibrium point, or fixed point), while r(t) = 1, ϕ(t) =σt+ϕ(0) results in the harmonic

solution z(t) = (cos(σt +ϕ(0)),sin(σt +ϕ(0)). Let T = 2π/σ . Then this solution sat-

isfies z(t) = z(t +T ) for all t, and we call it a periodic orbit (or a cycle), with period T .

A periodic orbit of a flow is a closed non-self intersecting curve in phase space. In the

present example, if σ 6= 0, then this periodic orbit is a so-called limit cycle, since it is

approached by nearby orbits —see below. For γ = 0, it is even possible to write down the

general solution.

The long-time behaviour of the orbits of one- and two-dimensional flows is well-

understood. In one dimension, the solutions are either constant, or strictly monotonic.

Indeed let ẋ = f (x) be a smooth differential equation over R, and let x = x(t) be a non-

constant solution (i.e., ẋ(t) = f (x(t)) and f (x0) 6= 0). Then separation of variables yields
∫ x(t)

x(0)
dx/ f (x) = t. Since the integral on the left-hand side is bounded (and smooth in t),

we have f (x) 6= 0 for x ∈ [x(0),x(t)]. Because t is arbitrary, f (x(t)) does not change sign.

Therefore the solution is monotonic, and hence it is either unbounded or tends to a finite

limit x(t)→ x∗. It then follows by continuity that x(t) = x∗ is a constant solution of the

differential equation.

In higher dimensions, limit sets of flows can be much more complicated than fixed

points, and we need a machinery to characterise this form of convergence. Let Γ(z0) =

{Φt(z0) : t ∈ R} be the orbit of z0.

A point w is an ω-limit point of the orbit Γ(z0) if there is a sequence (tk) of times such

that

lim
j→∞

tk = ∞ and lim
j→∞

Φtk(z0) = w. (4)

In other words, w is an ω-limit point if for any neighbourhood U of w there is a (smallest)

time t∗ = t∗(U) such that Φt∗(z0) ∈U .

The set of all ω-limit points of Γ(z0) is called the ω-limit set of Γ(z0), denoted by

ω(z0) [or ω(Γ), since this set is a property of the orbit]. By reversing the direction of

time, and replacing ∞ by −∞, we obtain the analogous concept of α-limit set.
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The simplest situation occurs when limt→∞ Φt(z0) = z∗, where z∗ is a fixed point.

Then, by letting tk = k and w = z∗ in (4), we find that z∗ ∈ ω(z0). Since there cannot be

any other ω-limit point (why?), we have ω(z0) = {z∗}.

Another possibility is that ω(z0) = α(z0) = z∗, with z0 6= z∗, that is, the orbit of z0

approaches z∗ in both time directions. We then say that z0 is a homoclinic point, and that

Γ(z0) is a homoclinic orbit. The point z0 is heteroclinic if ω(z0) = z∗, and α(z0) = w∗
where w∗ is an equilibrium distinct from z∗. Heteroclinic orbits are commonplace in flows

on the line. By contrast, homoclinic orbits are not possible on the line, but can be found

on the circle.

Let Γ be a periodic orbit. If z0 ∈ Γ, then α(z0) = ω(z0) = Γ. However, if z0 6∈ Γ, then

it is possible that one of the sets α(z0) and ω(z0) is equal to Γ and the other isn’t, as in (3).

Finally, if Γ is a homo/heteroclinic orbit, the possibility exists that ω(z0) ⊃ Γ for z0 6∈ Γ

but ω(z0) 6= Γ for z0 ∈ Γ, as the following example illustrates.

Example 1.5 Let us consider the differential equation

φ̇ = v

v̇ = −sin(φ)− γv
(

v2

2
− cos(φ)−1

) (5)

where γ > 0 denotes a fixed real parameter. Since the vector field depend periodically

on φ , the phase space is a cylinder: z = (φ ,v) ∈ S×R. This equation has been tailored

in such a way that an orbit with initial condition close to z = (0,0) approaches the curve

H(φ ,v) = 1 where H(φ ,v) = v2/2− cos(φ). Such a curve is invariant, since

Ḣ =
dH

dφ
φ̇ +

dH

dv
v̇ =−γv2(H−1),

and consists of three orbits: the fixed point (π,0), and two distinct orbits which ap-

proach the fixed point in both time directions, namely two homoclinic orbits4. The time-

dependence of φ and the phase portrait clearly show that the orbit approaches from oppo-

site sides the equilibrium point (π,0) (which coincides with (−π,0), since we are on the

torus), lingering longer and longer around it, without ever settling down.

4These orbits are also called separatrices, since they divide the phase space into regions whose orbits

have different topological properties.
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Exercise 1.1. Let n ∈ N. Define i) a flow on the line with n heteroclinic orbits; ii) a flow

on the circle with a homoclinic orbit; iii) a flow on the plane with n heteroclinic orbits

[Hint: modify the φ -dependence in (3)].

The following theorem describes all possible limit sets of a planar system.

Theorem 1.1 (Poincaré-Bendixson) Let ż = f (z) be a planar system with a finite num-

ber of equilibrium points. If the orbit Γ(z0) of z0 is bounded, then one of the following is

true:

i) The ω-limit set ω(z0) is a single equilibrium point z∗ and Φt(z0)→ z∗ as t → ∞.

ii) ω(z0) is a periodic orbit Γ∗ and Γ(z0) is either equal to Γ∗, or it spirals towards Γ∗
on one side of it.

iii) ω(z0) consists of equilibrium points and orbits whose α- and ω-limit sets are equi-

librium points.

In particular, any bounded ω-limit set which contains no equilibrium points is a pe-

riodic orbit [case ii)]. The proof of the Poincaré-Bendixson Theorem is exploits the fact

that solutions in two-dimensional phase spaces cannot cross, which eventually leads to

the existence of a monotonic one-dimensional Poincaré map (see next section).
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The above theorem illustrates a key aspect of the theory of dynamical systems. One

is not concerned with methods of solution of equations of motion, but rather in qual-

itative properties of families of solutions, here expressed in the language of limit sets.

Solving equations of motion is often done by computers, whereby we surrender to the

difficulty/impossibility of finding analytic solutions. Moreover, inspecting particular so-

lutions is not necessarily informative.

1.2 From continuous to discrete time

Let Φt be the flow of a differential equation ż = f (z) on a space M. There are several

ways of constructing from it a discrete-time dynamical system.

Time-advance maps
Given Φt , by merely restricting the time t to the integers, we obtain a discrete-time dy-

namical system of the same space. The map Φ1 is called the (unit) time-advance map of

the flow. It sends a point z(0) ∈ M to the point z(1). One may restrict the time in other

ways, for instance to the additive group hZ, for some h. A numerical integration scheme

is a time-advance map. Given z(0), it outputs an approximate value for z(h), where h is a

very small positive number. By iterating this map a large number of times, one obtains an

approximate numerical solution for large t. More sophisticated schemes adjust the size of

the time-step h to the location in phase space.

Poincaré maps

Let Φt be as above, and let the space M

be N-dimensional. Consider a smooth N −1

dimensional surface Σ with the property that

i) the vector field is nowhere tangent to Σ;

ii) the orbit of every point of Σ eventually re-

turns to Σ. The Poincaré map P sends the

point w ∈ Σ to the first intersection of the or-

bit of w with Σ.

w

ww

n

n+1 n+2

Σ

The surface Σ is called a surface of section of the flow. To define the Poincaré map,

we first introduce the notion of first-return time τ(w) to the surface of section at the point
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w

τ : Σ → N0 τ(w) = inf{t ∈ R : t > 0, Φt(w) ∈ Σ}. (6)

(The infimum ensures that τ(w) = 0 if w is an equilibrium point.) Then we define the

Poincaré map as follows:

P : Σ → Σ P(w) = Φτ(w)(w).

Choosing a surface of section requires some care. For example, consider the harmonic

oscillator (p. 2). The x-axis is a surface of section, and from symmetry we see that P(x)=

−x. To avoid collecting unnecessary information, we can either record only every other

crossing of the surface, or modify the surface so that there is a single crossing during each

period: Σ = {(x,y) ∈ R2 : y = 0, x > 0}, which is a ray. In either case, the Poincaré map

is the identity: every point is a fixed point. Because the rotations are isochronous (same

angular frequency), the first-return time is constant: τ(x) = 2π/ω .

In general, the first-return time is not constant, and it could be unbounded. Let us

consider again example 1.5, p. 5. The one-dimensional surface Σ = {(φ ,v) ∈ S×R : v =

0, 0 6 φ 6 π} is a surface of section for all orbits lying within the region H(φ ,v) 6 1.

The map P has two fixed points, φ = 0 and φ = π , and for all other points we have

P(φ) > φ . Considering the nature of the motion near the separatrix, we infer that this

Poincaré map has unbounded first-return time: limφ→π τ(φ) = ∞.

1.3 Linear systems

There is a complete theory of linear dynamical systems, which leads to their solution and

classification. (By contrast, nonlinear systems are solvable only in exceptional cases.)

A linear system of differential equations with constant coefficients

ẋ1(t) = A1,1x1(t)+A1,2x2(t)+ · · ·+A1,nxn(t)

ẋ2(t) = A2,1x1(t)+A2,2x2(t)+ · · ·+A2,nxn(t)
...

ẋn(t) = An,1x1(t)+An,2x2(t)+ · · ·+An,nxn(t)

can be written as

ż(t) = Az(t), (7)
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where z = (x1,x2, . . . ,xn)
T , and A denotes the square matrix with coefficients Ai, j. Letting

Auℓ = λℓuℓ uℓ ∈ Rn

denote the eigenvalue equation for A, particular solutions of the linear system are given

by exponential functions z(t) = exp(λℓt)uℓ. If the eigenvectors yield a basis of the phase

space Rn (that is, if the eigenvalues are distinct, or if geometric multiplicity equals al-

gebraic multiplicity), then the general solution —the flow— can be written as a linear

combination of exponentials

z(t) = c1eλ1tu1 + c2eλ2tu2 + · · ·+ cneλntun,

where the coefficients cℓ are determined by the initial conditions. (A similar expression

exists if eigenvectors fail to form a basis.) For a complex conjugate pair of eigenvalues,

the corresponding coefficients are complex conjugate, to result in a real-valued solution.

The initial condition z(0) = (0,0) yields the so-called trivial solution of the linear

system: z(t) ≡ (0,0). If Re(λℓ) < 0 for any ℓ = 1, . . . ,n, then the general solution tends

towards the trivial solution regardless of the initial condition: z(t)→ (0,0). In this case the

trivial solution is said to be stable. If we have at least one eigenvalue λℓ with Re(λℓ) >

0, then there are constants cℓ, i.e., there are initial conditions, such that ‖z(t)‖ grows

exponentially with time. The trivial solution is said to be unstable.

Example 1.6 Stable focus:

(
ẋ1

ẋ2

)

=

(
−1 −1

1 −1

)(
x1

x2

)

.

Eigenvalues and eigenvectors:

λ1 =−1+ i, u1 =

(
1

−i

)

, λ2 =−1− i, u2 =

(
1

i

)

.

The general solution (flow) with complex-conjugate coefficient c,c and c = |c|exp(iα) is:

(
x1(t)

x2(t)

)

= ceλ1tu1 + ceλ2tu2 =

(
2|c|e−t cos(t +α)

2|c|e−t sin(t +α)

)

.
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The time-dependence displays an expo-

nentially damped oscillation. In the x1-x2

phase plane the solution determines a curve.

If we use polar coordinates x1 = r cos(ϕ)

and x2 = r sin(ϕ), then the time-dependence

reads r(t)= 2|c|exp(−t) and ϕ(t)= t+α . If

we eliminate the time t, the curve is given by

r(t) = 2|c|exp(α)exp(−ϕ(t)), a logarithmic

spiral.

(It is a common misconception that the orientation of the spiral is linked to the imagi-

nary part of the eigenvalues.)

Example 1.7 Saddle point:
(

ẋ1

ẋ2

)

=

(
0 1

1 0

)(
x1

x2

)

.

Eigenvalues and eigenvectors:

λ1 = 1, u1 =

(
1

1

)

, λ2 =−1, u2 =

(
1

−1

)

.

The general solution (flow) with real-valued expansion coefficients is:
(

x1(t)

x2(t)

)

= c1eλ1tu1 + c2eλ2tu2 =

(
c1et + c2e−t

c1et − c2e−t

)

.

It is easy to verify that x2
1 − x2

2 = 4c1c2,

i.e., the curves in phase space (for differ-

ent initial conditions) are hyperbolae. Only

initial conditions with c1 = 0 (which is the

eigenspace of u2) yield solutions which tend

to the fixed point in the origin. All other ini-

tial conditions yield diverging orbits.
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The two eigenvectors u1 and u2 determine the so-called unstable and stable direction

of the saddle, respectively. More generally, eigenvectors with Re(λℓ) > 0 (Re(λℓ) < 0)

span the so-called unstable (stable) eigenspace.

Example 1.8 Stable node:

(
ẋ1

ẋ2

)

=

(
−1 0

0 −2

)(
x1

x2

)

Eigenvalues and eigenvectors:

λ1 =−1, u1 =

(
1

0

)

, λ2 =−2, u2 =

(
0

1

)

.

The general solution (flow) with real-valued coefficients is

(
x1(t)

x2(t)

)

= c1eλ1tu1 + c2eλ2tu2 =

(
c1e−t

c2e−2t

)

All solutions tend towards the origin, but

the relaxation along the u2 direction is faster.

It is easy to verify that the orbits in phase

space are given by x2 = x2
1c2/c2

1 (if c1 6= 0),

which is a foliation of parabolas.

We have given examples of stable focus, saddle, and stable node. There are also

unstable versions of foci and nodes, corresponding to eigenvalues with positive real part.

The orbits of the unstable systems are obtained from the orbits of the stable systems by

reversing the direction of travel.

These examples cover the typical cases occurring in two-dimensional linear ordinary

differential equations. In section 3, we shall meet ‘non generic’ cases, representing tran-

sitions between these systems.
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1.4 Classification of planar linear systems

Linear systems are classified using linear algebra. Let A be a 2×2 real matrix. Jordan’s

theorem states that there is an invertible 2×2 real matrix P such that

P−1AP = J, (8)

where J is one of the following matrices:

J1 =

(
λ1 0

0 λ2

)

J2 =

(
λ 1

0 λ

)

J3 =

(
α β

−β α

)

(9)

and λ1,λ2,λ ,α,β ∈ R, with β 6= 0. The matrices A and J have the same eigenvalues,

since trace and determinant are preserved by the linear coordinate change (8).

The matrix J appearing in (8) is called the Jordan canonical form of the matrix A.

Thus if we change co-ordinates in an appropriate way, then any matrix will be trans-

formed into precisely one of the three Jordan matrices (9), and hence any real linear

differential equation on the plane can be reduced to one of three canonical forms. A uni-

fying formalism is achieved by introducing the notion of exponential of a square matrix

A:

eA = 1+A+
A2

2!
+ · · ·= ∑

k>0

Ak

k!
,

where 1 denotes the identity matrix of the appropriate dimension. This expression con-

verges with respect to the norm

‖A‖ := sup
z 6=0

‖Az‖
‖z‖ .

It can be shown that the solution of the differential equation (7) has the neat form

z(t) = eAtz(0). (10)

We write the matrix exponential in the case in which A is one of the Jordan matrices (9).

exp(J1 t) =

(
eλ1t 0

0 eλ2t

)

exp(J2 t) = eλ t

(
1 t

0 1

)

exp(J3 t) = eαt

(
cos(β t) sin(β t)

−sin(β t) cos(β t)

)

.
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1.5 Some remarks on stability

There are countless definitions of stability in the literature, and we must spell out how this

term is interpreted in this course.

A fixed point z∗ is (Lyapounov) stable if for every neighbourhood of V of z∗ there is

a neighbourhood U of z∗ such that Φt(z∗) remains in V for all times. This means that

all points sufficiently close to z∗ remain forever near z∗ (although they do not necessarily

approach z∗).

Lyapounov stability is equivalent to the statement that the family of time-advance

maps Φt (see definition 1.1) is equicontinuous at x∗, namely continuous and with the

same variation for all t.

A fixed point z∗ is asymptotically stable if it is stable and if there is a neighbourhood

U of z∗ such that, for any x0 ∈U , Φt(x0) converge to z∗ as t → ∞. (Requiring stability is

not redundant here —see exercises.) A point may be stable but not asymptotically stable,

the trivial example being the identity: Φt = 1. For nontrivial examples see exercises.

In this course, we use the term unstable as the logical negation of stable. This is not

universally accepted, and often this term is interpreted in the following stronger sense: a

fixed point z∗ is unstable if there is a neighbourhood U of z∗ such that for all z0 ∈ U the

point Φt(z0) eventually leaves U . This is not the logical negation of stability, and hence

there are fixed points which are neither stable nor unstable —see exercises.

In section 2.3 we shall introduce the term structurally stable, quite unrelated to those

given above.

Exercise 1.2. Give an example of a one-dimensional smooth flow with a fixed point which

is

(a) not stable, yet all orbits converge to it;

(b) stable but not asymptotically stable;

(c) neither stable nor unstable, according to the strong definition of instability given

above.
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2 Hyperbolicity

In the previous section we computed the flow of linear systems. This knowledge will

be used to investigate local stability of equilibrium points of nonlinear systems. This

is possible as long as the so-called marginally stable cases —eigenvalues with zero real

part— are absent. By introducing nonlinear extensions of local linear systems, the linear

analysis can also provide information about global features of the dynamics.

2.1 Fixed points and linear stability

Let ż = f (z) denote a differential equation on Rn. A fixed point (or equilibrium point) z∗
is a root of the equation f (z) = 0. The initial condition z(0) = z∗ yields a constant solution

z(t) = z∗.

Example 2.1 We compute the fixed points of the forced van der Pol oscillator (p. 3) for

the parameter values σ = 0 and γ > 0. The fixed points are the solutions of the following

system of equations, derived from (2):

0 = x− x(x2 + y2) ⇒ x = 0, or x2 + y2 = 1

0 = y− y(x2 + y2)− γ ⇒ x2 + y2 6= 1 (since γ > 0).

Denoting the fixed point by z∗ = (x∗,y∗) we find:

y∗− y3
∗ = γ and x∗ = 0 (σ = 0,γ > 0). (11)

We see that if |γ| > 2/(3
√

3), there is a

single solution, and three solutions if |γ| <
2/(3

√
3). The fixed point with negative or-

dinate y∗ < −1 exists for all γ > 0, while

for 0< γ < 2/(3
√

3) the two additional fixed

points have positive ordinate, 0< y∗ < 1/
√

3

and 1/
√

3 < y∗ < 1, respectively. The crit-

ical parameter value γ = 2/(3
√

3) corre-

sponding to y∗ = 1/
√

3 leads to a bifurcation

—see section 3.

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1

 

y



2 HYPERBOLICITY 15

If z∗ is a fixed point of the differential equation ż = f (z), then approximate solutions

near z∗ can be obtained by linearising the equation. If z(t) = z∗+δ z(t) denotes a solution

initially close to the fixed point, that is, if the norm of the vector δ z(t) = z(t)− z∗ is small

when |t| is small, then expanding the vector field near z∗ in Taylor series yields

δ ż = ż = f (z) = f (z∗+δ z)

= f (z∗)+D f (z∗)δ z+O(δ z2) = D f (z∗)δ z+O(δ z2),
(12)

where D f (z∗) denotes the Jacobian matrix of f at z∗. The expression O(δ z2) contains all

monomials in δx,δy of total degree at least 2 (δx2,δy2,δxδy,δx3, etc.). Since ‖δ z‖ is

small, the nonlinear contributions can be neglected, and the linearised equation

δ ż = D f (z∗)δ z, (13)

called the variational equation, provides precious information on the behaviour of the

solutions.

We have three scenarios. If all the eigenvalues of the Jacobian have negative real

part, then the increment δ z(t) decays exponentially (the fixed point solution is stable),

and the linear approximation remains valid for all times (see example 1.8). If one of the

eigenvalues has a positive real part, then the increment increases exponentially for almost

every initial condition (see example 1.7). Eventually, the orbit will move away from z∗,

where the linear approximation is no longer valid, and such an exponential behaviour can

no longer be inferred. Finally, if all eigenvalues of the Jacobian have zero real part, then

the linearised system provides limited information, since the dynamics will be determined

by higher-order terms in the expansion (12).

Example 2.2 We return to the fixed points of the forced van der Pol oscillator, discussed

in example 2.1. The Jacobian matrix is given by

D f (x,y) =

(
1−3x2 − y2 −σ −2xy

σ −2xy 1− x2 −3y2

)

. (14)

Specialising this expression to the parameter ranges σ = 0,γ > 0, and the fixed points

(11), we obtain

D f (0,y∗) =

(
1− y2

∗ 0

0 1−3y2
∗

)

, y∗− y3
∗ = γ. (15)
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There is a fixed point with y∗ < −1 for

all positive values of γ , and clearly the corre-

sponding eigenvalues of the Jacobian matrix

are both negative. Thus this fixed point is a

stable node. For 0 < γ < 2/(3
√

3) there are

two additional fixed points with 0< y2
∗< 1/3

and 1/3 < y2
∗ < 1, respectively, the first one

being an unstable node, the second one a sad-

dle. 0

γ

Two issues need to be resolved. First, the above heuristic arguments must be made

more rigorous; we shall do so in the next session, with the Hartman-Grobman theorem.

Second, we would like to piece together the various local information obtained by lineari-

sation, to obtain a global qualitative view of the dynamics. We shall provide a glimpse of

the possibilities in section 3.2.

2.2 Conjugacy and invariant manifolds

Informally, a manifold is a set that, locally, looks like Euclidean space Rn, for some n.

This property gives local coordinates, so that on a manifold we can do calculus and ge-

ometry. A sphere is a two-dimensional manifold because, locally, it looks like R2 (hence

people believed that the Earth was flat). The circle, the torus, the cylinder are also two-

dimensional manifolds. The eigenspaces of a saddle point are one-dimensional manifolds.

By contrast, two lines intersecting transversally do not form a manifold, because there is

no neighbourhood of the point of intersection where this set looks like Rn, for any n.

More precisely, a set M is a differentiable manifold if it is provided with a finite or

countable collection of charts, such that every point is represented in at least one chart.

A chart is an open set U ⊂ Rn together with a one-to-one mapping φ : U → φ(U) ⊂ M.

If z and z′ in two charts U and U ′ have the same image in M, then z and z′ must have

neighbourhoods V ⊂U and V ′ ⊂U ′ with the same image in M. In this way we get a map

(φ ′)−1 ◦φ : V →V ′. Two charts U and U ′ are compatible if the n components of this map

are differentiable5. An atlas is a union of compatible charts, and two atlases are equivalent

5Adjacent charts of a road atlas clearly have this property.
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if their union is also an atlas. Finally, a differentiable manifold is a class of equivalent

atlases.

To analyse structural similarities between dynamical systems we shall require two

classes of functions.

Definition 2.1 A bijective map f is a homeomorphism, if both f and f−1 are continuous.

The map f is a diffeomorphism if both f and f−1 have continuous first derivatives.

Let f : X → Y be a function. For a homeomorphism we only need continuity, hence

it suffices that X and Y be topological spaces; for a diffeomorphism, X and Y must be

smooth manifolds, because we must be able to differentiate.

Example 2.3 Consider the two differential equations (on R+)

ẋ =−x, ẏ =−y/2, (x,y > 0) .

The second equation can be transformed into the first by the substitution y = h(x) =
√

x,

which is bi-continuous in the given range. The two flows

Φt(x0) = e−tx0, Ψt(y0) = e−t/2y0

are related via the function h by the equation Ψt(h(x0)) = h(Φt(x0)).

Definition 2.2 The flows Φt and Ψt on the spaces X and Y , respectively, are said to be

topologically conjugate, if there exists a homeomorphism h : X → Y such that Ψt ◦ h =

h◦Φt , for all t.

The attribute ‘topological’ refers to the continuity of h, and corresponding orbits of

conjugate flows, namely, Φt(z0) and Ψt(h(z0)), are distorted versions of one another.

Topological conjugacy can be defined locally, that, is, in a neighbourhood U of some

point in phase space. In this case the relation Ψt ◦h = h◦Φt , will hold for all t such that

Φt(z0) ∈ U .

Definition 2.3 A fixed point z∗ of the differential equation ż= f (z) is said to be hyperbolic

if all eigenvalues of the Jacobian matrix D f (z∗) have non-zero real part.
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The term hyperbolic is unfortunate, because it suggests that the fixed point is a saddle

(where some eigenvalues have positive real part, some have negative real part, and —in

some cases— the orbits are hyperbolae). The above definition does not require this. The

following result is the rigorous justification of linear stability analysis.

Theorem 2.1 (Hartman-Grobman) Let z∗ be a hyperbolic fixed point of the differential

equation ż = f (z). Then there exists a neighbourhood U of z∗ such that the flow of the

differential equation is topologically conjugate in U to the flow of the variational equation

ẇ = D f (z∗)w. In two-dimensions, if f is smooth, then so is the conjugacy function.

Definition 2.4 Let z∗ be a hyperbolic fixed point of the flow Φt , and let U be a neighbour-

hood of z∗. The sets

W s
U(z∗) = {z ∈U : Φt(z)→ z∗ as t → ∞ and Φt(z) ∈U for all t > 0}

W u
U(z∗) = {z ∈U : Φt(z)→ z∗ as t →−∞ and Φt(z) ∈U for all t 6 0}

are called (local) stable and unstable manifolds of z∗ in U.

Thus the stable (unstable) manifold of a hyperbolic fixed point z∗ is the set of points

in U whose ω- (α-) limit set is z∗, see section 1.1, provided that the forward (backward)

orbit of these points never leaves U .

The Hartman-Grobman theorem implies that the stable and unstable manifolds are

tangent to the linear eigenspaces of the Jacobian at z∗. One can extend the local manifolds

to global manifolds by transportation through the flow:

W s(z∗) =
⋃

t60

Φt(W
s

U(z∗)) and W u(z∗) =
⋃

t>0

Φt(W
u

U(z∗)).

2.3 Structural stability

In example 2.2 we have observed an important phenomenon: the dynamical behaviour

does not necessarily change when a parameter is varied, or when a perturbation is applied.

This is a form of stability, called structural stability.

Definition 2.5 The differential equation ż = f (z) is structurally stable if for any function

g of class C1, and any sufficiently small ε > 0, the flow of ż = f (z)+εg(z) is conjugate to

the flow of ż = f (z).
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If the property above holds only in a neighbourhood of a point, then we call the flow

locally structurally stable.

Let z∗ be a hyperbolic fixed point of ż= f (z)s; in particular, the Jacobian D f (z∗) is not

singular. Then the equation fε(z) = f (z)+ εg(z) = 0 has a solution z′∗ close to z∗, from

the implicit function theorem; that is, the perturbed differential equation ż = fε(z) also

has a fixed point. Since D f (z∗) has eigenvalues with non-vanishing real parts, and these

eigenvalues depend continuously on matrix elements, the same holds for the eigenvalues

of D fε(z
′
∗). Thus both fixed points z∗ and z′∗ are hyperbolic. The Hartman-Grobman

theorem tells us that ż = f (z) and ż = fε(z) are conjugate to the corresponding variational

equations, δ ż = D f (z∗)δ z and δ ż = D fε(z
′
∗)δ z, respectively. Next we have the following

result.

Theorem 2.2 A necessary and sufficient condition for the topological equivalence of two

linear systems, all of whose eigenvalues have non zero real part, is that the number of

eigenvalues with negative (hence positive) real part be the same in both systems.

In particular, all asymptotically stable fixed points are topologically equivalent.

The Jacobians D f (z∗) and D fε(z
′
∗) satisfy the assumption of the above theorem. It fol-

lows that for all sufficiently small ε , the systems ż = f (z) and ż = fε(z) are topologically

conjugate in a neighbourhood of the respective fixed points. We have established that the

system ż = f (z) is structurally stable in a neighbourhood of a hyperbolic fixed point. In

particular, saddle points are locally structurally stable. One can extend statements of this

type to more general invariant hyperbolic structures.

2.4 Hyperbolic structures for diffeomorphisms

Hyperbolic fixed points and stable/unstable manifolds can also be introduced for discrete-

time systems, more precisely for diffeomorphism (see definition 2.1). In presence of

complicated dynamics, these are simpler to handle than flows.

Let f : M → M be a diffeomorphism of a manifold M. A fixed point z∗ is a point of M

such that z∗ = f (z∗). Expanding f in Taylor series near z∗, and neglecting all non-linear

terms, we derive the discrete-time analogue of the variational equation (13):

wt+1 = D f (z∗)wt , w = z− z∗. (16)

As in the continuous time case, the stability of the fixed points, and their classification are

based on the study of the eigenvalues of the Jacobian D f , and its Jordan form.
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However, the superficial similarity between the variational equations (13) and (16) is

misleading, and the stability criterion is quite different in the two cases. Comparing the

respective solutions makes this clear [cf. (10)]:

δ z(t) = eD f (z∗)tδ z(0) wt = (D f (z∗))tw0.

Thus the stability condition associated to the eigenvalues λ of the Jacobian is given by

|λ |< 1 in the discrete time case (16), whereas in the continuous time case (13) is Re(λ )<

0.

The definition of conjugacy is simpler in the discrete-time case (cf. definition 2.2).

Definition 2.6 The maps f and g on the spaces X and Y , respectively, are said to be

topologically conjugate, if there exists a homeomorphism h : X →Y such that g◦h= h◦ f .

Note that there is no explicit reference to time. Indeed if f and g are conjugate, then

(g◦g)◦h = g◦h◦ f = h◦ ( f ◦ f ).

that is, f ◦ f and g◦g are also conjugate via h. Then, writing f n for Φn, as it is customary

for maps, an easy induction shows that h◦ f n = gn ◦h for all n.

In place of definition 2.3, we now have

Definition 2.7 A fixed point z∗ of a diffeomorphism f is said to be hyperbolic if all eigen-

values of the Jacobian matrix D f (z∗) have absolute value different from 1.

Finally, there is a Hartman-Grobman theorem for diffeomorphisms.

Example 2.4 Arnold ‘cat map’. We consider the following linear map of the two-dimensional

torus T2 = S×S:
xn+1 ≡ xn + yn (mod 1)

yn+1 ≡ xn (mod 1).

This map has the fixed point z∗ = (0,0). Because of linearity, the map and its Jacobian

coincide, and the variational equation in matrix form reads:

(
xn+1

yn+1

)

=

(
1 1

1 0

)(
xn

yn

)

.
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The eigenvalues and eigenvectors are

given by

λ u =
1+

√
5

2
, uu =

(
2

−1+
√

5

)

λ s =
1−

√
5

2
, us =

(
2

−1−
√

5

)

where the superscripts u,s refer to stable and

unstable, since |λ s|< 1 and |λ u|> 1, respec-

tively (recall that for maps these are the con-

ditions for stability/instability).

On the torus, the stable and unstable manifold of the fixed point intersect, giving rise

to homoclinic points. They are defined just as in the continuum time case, namely their

forward and backward orbits approach the fixed point at the origin. The number of homo-

clinic points is infinite, because the stable and unstable manifolds have irrational slope,

and hence they never close up on the torus. It is possible to show that such homoclinic

points are dense on the torus.

The construct of stable and unstable manifolds is not restricted to fixed points: it can

also be defined for orbits of dynamical systems (and indeed to invariant sets, namely sets

which are not changed by the dynamics).

Definition 2.8 Let zn+1 = f (zn) be a diffeomorphism. The sets

W s(z) = {z′ : ‖ f n(z′)− f n(z)‖→ 0 as n → ∞}
W u(z) = {z′ : ‖ f n(z′)− f n(z)‖→ 0 as n →−∞}

are called stable and unstable sets of the orbit zn = f n(z).

For the cat map, these stable and unstable manifolds are determined solely by the

eigenvectors of the Jacobian, and the latter does not depend on co-ordinates. For this

reason, at every point in phase space there are two directions, the stable and unstable

direction, along which the dynamics contracts and expands the space, respectively. Such

a structure is called a hyperbolic structure; its presence is regarded as the signature of

chaotic dynamics —see section 5.
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3 Bifurcations

We investigate the topological changes that occur in dynamical systems when one or

more parameters are varied. These transitions involve a violation of hyperbolicity, We

shall consider three scenarios:

1. A pair of fixed points appears out of nowhere (saddle-node bifurcation).

2. A stable fixed point becomes unstable while it ejects a limit cycle (Hopf bifurca-

tion).

3. A limit cycle disappears by colliding with an unstable fixed point (homoclinic bi-

furcation).

The analysis of the locus of parameter values at which these phenomena occur will pro-

vide valuable information on the structure of parameter space.

3.1 Centre manifolds

The behaviour in a neighbourhood of a hyperbolic fixed point z∗ is captured by the linear

part of the dynamics, characterised by stable and unstable manifolds tangent to the linear

eigenspaces of the Jacobian matrix. In fact, using linear superposition, the flow can be de-

composed into parts associated with the stable and unstable subspaces (formally, a direct

sum of one-dimensional flows). A similar statement applies if the Jacobian has eigen-

values with vanishing real part. In this case however, in addition to stable and unstable

manifolds, the so-called centre manifold appears, which contains the dynamics associated

to the eigenvalues with vanishing real part. In presence of a centre manifold, the dynamics

is no longer structurally stable, namely, its topological properties may change under the

effect of an arbitrarily small perturbation.

Theorem 3.1 (Centre Manifold Theorem) Let z∗ be a fixed point of the differential equa-

tion ż = f (z). Let Es, Eu, and Ec denote the linear eigenspaces of the Jacobian matrix

D f (z∗), which correspond to eigenvalues Re(λ ) < 0, Re(λ ) > 0, and Re(λ ) = 0 respec-

tively. Then there exist smooth invariant manifolds W s and W u tangent to Es and Eu at

z∗, and an invariant manifold W c tangent to Ec. The stable and unstable manifolds W s

and W u are unique.
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In the non-hyperbolic case, the main problem is to determine the dynamics on the

centre manifold, since the dynamics on the other manifolds is known up to topological

conjugacy. In particular, if the unstable manifold is empty (Re(λ ) 6 0), then the orbits

near z∗ converge exponentially to the centre manifold, and the long-time dynamics near

z∗ is captured by a lower-dimensional dynamical system.

Example 3.1 We consider the following nonlinear system:

ẋ = y

ẏ = −y− x3.

There is an equilibrium point z∗ = (0,0),

with Jacobian

D f (0,0) =

(
0 1

0 −1

)

.

E

E

s

c

W
c

W
s

The linear analysis gives:

λ s =−1, us =

(
−1

1

)

, λ c = 0, uc =

(
1

0

)

.

The centre manifold is tangent to uc at the origin, so we let

y = h(x) = ∑
k>0

akxk = 0+0 · x+a2x2 +a3x3 + · · ·

Since the centre manifold is invariant, we write:

ẏ =−h(x)− x3 =
dh

dx
ẋ =

dh

dx
h(x)

which gives

−a2x2 − (a3 +1)x3 +O(x4) = (2a2x+O(x2))(a2x2 +O(x3))

= 2a2
2x3 +O(x4).
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Thus a2 = 0, a3 =−1 and

ẋ = y = h(x) =−x3 +O(x4).

We see that the solution x(t) tends to zero as t → ∞, so the nonlinear terms make the

origin stable (nonlinear stability).

3.2 Bifurcations of fixed points

Let ż = fα(z) be a differential equation in Rn, where fα depends smoothly on a real

parameter α . We assume that there is a fixed point z∗ = z∗(α), whose Jacobian matrix

also depends on α . Suppose that for an isolated critical parameter value α = α∗ the fixed

point z∗ is non-hyperbolic. Several possibilities exist for the behaviour of the system at

and near α∗.

3.2.1 Saddle-node bifurcation

Suppose that Jacobian matrix D fα∗(z∗) has a single zero eigenvalue:

fα∗(z∗) = 0 and detD fα∗(z∗) = 0 .

where 0 = (0, . . . ,0) ∈ Rn. This is a system of n+ 1 equations in as many unknowns,

namely the n coordinates of the fixed point z∗, and the critical parameter α∗.

Assume that there is a single eigenvalue with vanishing real part. Then the dynamics

in the vicinity of z∗ is captured by a differential equation ẋ = h(x) on a one-dimensional

centre manifold. Choosing the coordinates so that the origin is the fixed point, the constant

term of h vanishes. By assumption, the linear term also vanishes, while the coefficient of

the quadratic term —if it is not equal to zero— can be normalised to ±1 by rescaling the

time. Then the equation of motion on the centre manifold reads ẋ =±x2 +O(x3). Let us

choose the negative sign (the other case is analogous). If we consider parameter values

close to α∗, then the equation of motion on the centre manifold will contain additional

small contributions, ẋ = a0 + a1x− x2 +O(x3), a so-called unfolding. Introducing the

coordinate change w = x− c, one obtains ẇ = a0 +a1c− c2 +(a1 −2c)w−w2 +O(w3).

By choosing c = a1/2, the linear term can be eliminated and one ends up with the so-

called normal form of the bifurcation:

ẇ = µ −w2 . (17)
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Here the parameter µ is a function of the

original parameter α of the system. The

expression tells us that there is no fixed

point for µ < 0 and a pair of stable and

unstable fixed points w∗ = ±√
µ for µ >

0. This means that if we cross the bifur-

cation point µ = 0 in parameter space, a

pair of fixed points is generated/destroyed:

a saddle-node bifurcation.

w

0

0 µ
This terminology is justified as follows. For µ > 00, the one-dimensional system (17) on

the centre manifold has a stable and an unstable fixed point. If the motion in the transver-

sal direction is expanding, then the former becomes a saddle, and the latter an unstable

node; if it is contracting, the former becomes a stable node, and the latter a saddle. In any

case, there is a saddle and a node.

The saddle-node bifurcation is an instance of a codimension-one bifurcation, mean-

ing that the critical parameter set (a point) has one dimension fewer than the parameter

space (a line). The same would apply for a critical parameter curve in a two-dimensional

parameter space, etc.

The following result makes the above reasoning rigorous.

Theorem 3.2 (Saddle-node bifurcation) Let ż = fα(z) be a differential equation de-

pending smoothly on a parameter α . At α = α∗, we assume that there exists a fixed

point z∗ such that

SN1: D fα∗(z∗) has a simple eigenvalue 0 with right eigenvector v and left eigen-

vector w. All other eigenvalues have non-zero real part;

SN2: w · ∂ fα(z)

∂α

∣
∣
∣
∣
(z∗,α∗)

6= 0 (transversality condition);

SN3: w ·D2 fα∗(z∗)(v,v) 6= 0 (quadratic non-degeneracy).

Then there exists a smooth curve of fixed points ξ∗(α) with ξ∗(α∗) = z∗. Depending on

the signs of the expressions in SN2 and SN3, there are no fixed points near z∗ if α < α∗
(or α > α∗). The two fixed points near α∗ are hyperbolic.



3 BIFURCATIONS 26

The condition SN3 is defined via

w ·D2 f (z)(u,v) = ∑
k,l,n

wk

∂ 2 f (k)(z)

∂xn∂xl

unvl f = ( f (1), . . . , f (n)).

Example 3.2 Forced van der Pol oscillator. The fixed point equation can be written as

[see eq. (2)]

(
0

γ

)

=

(
1− r2 −σ

σ 1− r2

)(
x

y

)

r2 = x2 + y2.

Regarding this expression as a linear system and solving for x and y, we obtain an equation

for r2, the square distance from the origin of the fixed point z∗ = (x∗,y∗):

r2 =
γ2

(1− r2)2 +σ2
.

We now require that the Jacobian matrix (14) has a vanishing eigenvalue, namely zero

determinant:

0 = det(D f (z∗)) = (1− r2)2 −2r2(1− r2)+σ2 .

Re-arranging the last two equations, we obtain

γ2 = 2r4(1− r2)

σ2 = (3r2 −1)(1− r2).

These expressions can be viewed as a

parametric representation of a curve in the

γ-σ plane, with the curve parameter r2 in the

range 1/3 6 r2 6 1. The values r2 = 1,2/3,

and 1/3 correspond, respectively, to the ori-

gin, the cusp, and the upper intersection with

the γ-axis.

 0

 0.2

 0.4

 0.6

 0.8

 0  0.2  0.4  0.6  0.8

γ

σ

3

1
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Using the analysis for σ = 0 (example 2.2, p. 15), and structural stability, we can iden-

tify the region in parameter space where the pair of fixed points exists, without additional

computation. The presence of a cusp in the bifurcation diagram suggests that our analysis

is still incomplete. We shall continue it in the next section.

3.2.2 Hopf bifurcation

The second possibility by which a hyperbolic fixed point can change stability is via a

complex conjugate pair of eigenvalues (vanishing real part, but non-vanishing imaginary

part). Suppose α∗ is a parameter value where such an instability takes place. The (non-

hyperbolic) fixed point and the parameter obey

fα∗(z∗) = 0 and det(D fα∗(z∗)− iω1) = 0,

where ω 6= 0 denotes the imaginary part of one of the eigenvalues. These n+2 real equa-

tions for the unknowns (z∗,α∗,ω) give again one algebraic constraint for the parameter

value, that is, the equations determine a codimension-one manifold in parameter space

where the instability occurs.

A complex conjugate pair implies a two-dimensional centre manifold (see also exam-

ple 1.6). The corresponding equation of motion on the centre manifold and the unfolding

in a neighbourhood of the bifurcation point requires some substantial —if straightforward—

computations. The resulting two-dimensional differential equation is most conveniently

written in polar coordinates (x = r cos(ϕ), y = r sin(ϕ)) as

ṙ = µr± r3 +O(r4), ϕ̇ = ω +O(r).

The quantity µ is the unfolding parameter, while the sign in front of the cubic term char-

acterises two variants of the same bifurcation.

Let us first consider the negative sign (the

so-called supercritical case). The fixed point

r = 0 [that is, (x,y) = (0,0)] is stable for

µ < 0 and unstable for µ > 0. If µ > 0 then

there is a stable periodic solution r =
√

µ ,

ϕ = ωt, given by x(t) =
√

µ cos(ωt), y(t) =√
µ sin(ωt), namely a limit cycle.

x

y 0
µ
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If the cubic coefficient is +1 (the so-called sub-critical case), then the stability proper-

ties of the fixed points are the same, but the system develops an unstable periodic solution

r =
√−µ , ϕ = ωt, i.e., Z(t) =

√−µ(cos(ωt),sin(ωt)) for µ < 0.

This type of bifurcation, whereby the loss of stability of a fixed point gives rise to a

limit cycle, is called a Hopf bifurcation. The analysis presented here be made rigorous

with a few additional technical assumptions.

Example 3.3 Let us return to the analysis of the bifurcations of the forced van der Pol os-

cillator. The condition for a Hopf bifurcation in a two-dimensional system, that is, a com-

plex conjugate imaginary pair of eigenvalues, results in Tr(D f (z∗))= 0 and det(D f (z∗))>
0. With the Jacobian matrix (see example 3.2) we thus obtain

0 = 2−4r2, (1− r2)2 −2r2(1− r2)+σ2 > 0 .

With the condition for the fixed point (see example 3.2), we arrive at

r2 =
1

2
, σ2 >

1

4
, γ2 =

1

2

(
1

4
+σ2

)

,

which is a ray in the σ2-γ2 plane, originating from the point r2 = 1/2 on the saddle-node

curve, located on the upper branch, near (but not at) the cusp.

We can now complete the analysis of the bifurcation diagram of the forced van der

Pol oscillator, by re-visiting examples 1.4, 2.2, and 3.2.

Within the domain bounded by the

saddle-node bifurcation line the flow con-

tains a stable node/focus (SN), an unstable

node/focus (UN), and a saddle (SD). Fur-

thermore, example 1.4 tells us that the flow

possesses a stable limit cycle (SLC) at γ =

0. That suggests that the limit cycle is de-

stroyed at the Hopf bifurcation line in a sub-

critical Hopf bifurcation leaving a stable fo-

cus (SF) behind.

 0
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 0.8
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We have been therefore able to gain substantial insight into the phase portrait (up

to topological equivalence) without actually integrating the underlying differential equa-

tions. There are still exceptional points in the bifurcation diagram, such as the point where
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the Hopf bifurcation line terminates at the saddle-node bifurcation, or the cusp formed by

the merging of two saddle-node bifurcation lines. These degenerate cases are related to

codimension-two bifurcations.

3.3 A homoclinic bifurcation

So far we have considered changes in the topology of a phase portrait related to changes of

stability of fixed points. Such local changes may have global repercussions; for instance,

the system (17) has no bounded orbits for negative parameter values, but if the parameter

is positive, ‘half’ of the orbits are bounded. There are other mechanisms that can trigger

global changes in the dynamics when a parameter is changed. In this section we illustrate

the so-called homoclinic bifurcation for two-dimensional flows.

We consider a planar system with a saddle point, namely a hyperbolic fixed point

with a stable and an unstable manifold. This system has the property that these manifolds

have a non-empty intersection, which is a homoclinic orbit. Specifically, we consider the

following nonlinear oscillator (‘the fish’):

ẋ = y, ẏ = 2x−3x2. (18)

There are two fixed points, (0,0) and (2/3,0). The Jacobian matrix reads

D f (x,y) =

(
0 1

2−6x 0

)

hence the former is a saddle (eigenvalues ±
√

2 with stable and unstable eigenvectors

(1,∓
√

2)), and the latter is a centre (complex conjugate eigenvalues on the unit circle).

The Hamiltonian function6

H(x,y) =
1

2
y2 − x2 + x3 (19)

is a conserved quantity; indeed

Ḣ = yẏ+(−2x+3x2)ẋ = y(2x−3x2)+(−2+3x2)y = 0.

6Physically, it represents the energy.
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It follows that the level sets of the func-

tion H, namely the curves H(x,y) = const.

are union of orbits. In particular, the level

set H(x,y) = 0 comprises four orbits, one

of which is homoclinic. All other level sets

consist of one or two orbits, depending on

the value of H.

Next we modify equations (18) as follows (the ‘dissipative fish’):

ẋ = y

ẏ = 2x−3x2 − γy(H(x,y)−µ)

where H(x,y) is given in (19), γ and µ are parameters, and γ > 0. The additional term

plays the role of a ‘damping force’. The function H is no longer invariant, and one finds:

Ḣ =−γy2(H(x,y)−µ),

giving

H(x(t),y(t))−µ =
(
H(x(0),y(0))−µ

)
exp
(
−γ
∫ t

0
y2(t ′)dt ′

)
.

Therefore, as t → ∞ either y(t) → 0 or H(x(t),y(t)) → µ . The first case corresponds to

one of the fixed point solutions (0,0) or (2/3,0), or to the stable manifold of the saddle

point (0,0). This set of points is exceptional (zero Lebesgue measure).

The second possibility H(x(t),y(t))→ µ , which affects almost all initial conditions,

depends on the value of the parameter µ . If µ = µ0 = 0, then the level curve H(x,y) = 0

comprises a homoclinic orbit, approached by all points inside the resonant domain, as

well as the unbounded orbit emanating from the saddle-point, approached by all points

outside. In the parameter range −4/27 < µ < µ0 = 0 (−4/27 is the value of H at the

stable equilibrium) the equaiton H(x,y) = µ determines a closed orbit, which is stable

(a limit cycle), together with an unbounded orbit. By contrast, no closed orbit exists if

H(x,y)<−4/27 or H(x,y)> 0.
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µ<µ 0 µ=µ 0 µ>µ 0

The change in the topology of the flow which occurs at µ0 = 0 does not involve a

change of stability of fixed points, but rather the collision of a limit cycle with a saddle

point; the former briefly morphs into a homoclinic orbit, and then disappears. When the

limit cycle exists (µ < 0), the bounded orbits form a two-dimensional domain in phase

space, namely the strip bounded by the two branches of the stable manifold of the saddle

point. Such a strip extends to infinity. By contrast, if µ > 0, the bounded orbits consist of

two fixed points, and the one-dimensional stable manifold of the saddle, with one branch

coming from infinity, and the other spiralling away from the unstable focus.

The invariant sets of maps and higher-dimensional flows become more varied and

exotic, and so do their bifurcations. As parameters change, one may observe infinite

cascades of bifurcations —the mechanism for the creation of chaos— or collisions of

strange invariant sets.
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4 Symbolic dynamics

Symbolic dynamics is the study of sequences of symbols associated with orbits of dynam-

ical systems. This is a tool of wide applicability, needed to handle the complex phenom-

ena —much richer that those we have examined so far— found in the study of dynamical

systems.

These phenomena first appear in three-dimensional flows, and their analysis present

substantial difficulties. By contrast, complicated dynamics is already present in one-

dimensional maps. For this reason, we now shift our attention to the latter, where there is

a chance to develop the basic theory, and to illustrate several constructs which are relevant

to more general systems.

Let f : M → M, xn+1 = f (xn) be a discrete dynamical system on a set M. We recall

some terminology and notation. The transformations Φn of definition 1.1 will now be

denoted by f n, with f 0 = 1, and f n+1 = f ◦ f n, that is

f n = f ◦ f ◦ · · · ◦ f
︸ ︷︷ ︸

n

.

A point x∗ ∈ M is a fixed point if x∗ = f (x∗). If x0 is a fixed point of f n, for some n ∈ N,

then we say that the orbit of x0 is periodic. Such an orbit is a sequence consisting of

indefinite repetitions of a finite sub-sequence. If (x0,x1, . . .xn−1) are distinct, and xn = x0,

then we say that n is the (minimal) period of the orbit.

4.1 Bernoulli shift map

We introduce a well-known ‘toy-model’ of irregular dynamics, a map of disarming sim-

plicity, with orbits of seemingly unlimited complexity: the Bernulli shift map, or doubling

map.

Let I = [0,1), and let B : I → I be given

by

xn+1 = B(xn)≡ 2xn( mod 1)

=

{
2xn if 0 6 xn < 1/2

2xn −1 if 1/2 6 xn < 1.
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By identifying [0,1) with the unit circle

S1 = {z ∈ C : |z|= 1}= {e2πix : x ∈ [0,1)}

the map B becomes a continuous map of a compact domain. Indeed B is conjugate —via

the exponential function— to the restriction to S1 of the analytic map g(z) = z2:

g(z) = z2 = e2πi2x = e2πi2x(mod 1) = e2πiB(x) .

On S1 we have the distance (metric):

|x− x′|= min
m∈Z

{|x− x′+m|}.

To find the periodic points of B we fix n ∈ N and solve the congruence

x = Bn(x)≡ 2nx(mod 1).

This gives x = 2nx− k, for some k ∈ Z, that is, x = k/(2n −1), k = 0,1, . . . ,2n −2. Each

value of k corresponds to a periodic point whose minimal period is a divisor of n. The set

of all such points, denoted by Pern(B), is given by

Pern(B) = {x ∈ [0,1) : Bn(x) = x}=
{ k

2n −1
: k ∈ Z, 0 6 k 6 2n −2

}
.

For n = 1, we have k = 0, and x∗ = 0. For n = 2, we have again the fixed point (k = 0),

while the values k = 1,2 give one periodic orbit of minimal period 2, namely {1/3,2/3}.

To see the bigger picture, we represent x ∈ [0,1) with binary digits (base 2):

x =
1

2
σ0 +

1

22
σ1 +

1

23
σ2 + · · · = 0.σ0σ1σ2 . . . , σk ∈ {0,1}.

For instance:

1

3
= 0.010101 . . .= 0 · 1

2
+1 · 1

22
+0 · 1

23
+1 · 1

24
+ · · ·= ∑

k>1

1

4k
.

How does B(x)≡ 2x(mod 1) look like in binary?

2x = σ0 +
1

2
σ1 +

1

22
σ2 + · · · = σ0.σ1σ2 . . .

2x(mod 1) =
1

2
σ1 +

1

22
σ2 +

1

23
σ3 + · · · = 0.σ1σ2σ3 . . . .
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The action of B on x amounts to a left shift of the binary digits of x, discarding the digit

to the left of the radix point as a result of the mod operator.

We introduce the space of all semi-infinite sequences binary digits (which we write

by juxtaposing digits):

Ω =
{

σ0σ1 . . . : σk ∈ {0,1}
}∼= {0,1}N, (20)

and we define the (left) shift map S on Ω:

S(σ0σ1σ2 . . .) = (σ1σ2σ3 . . .).

Let h : Ω→ I be the map which sends a binary sequence to the corresponding real number.

We have the commutative diagram

Ω
S−→ Ω



yh



yh

I
B−→ I

namely, B ◦ h = h ◦ S. Moreover, the map h is continuous (with respect to the natural

topology7 on Ω). However, this relation does not provide a conjugacy, because h is not

invertible, due to the identity

0.111111 . . .= ∑
k>1

1

2k
= 1 = 1.000000 . . . .

In other words, the integer 1 has two distinct binary representations, and hence so does

any rational number whose denominator is a power of 2. (Think about it.)

This is not a big problem though; it suffice to remove from Ω all sequences which end

up with indefinite repetitions of the digit 1. From this correspondence, we shall deduce

with surprising ease many properties of the dynamics of B.

Every periodic symbol sequence yields a periodic orbit. An example will suffice to

elucidate the general argument:

0.00101
︸ ︷︷ ︸

5

00101
︸ ︷︷ ︸

. . . =

(
1

23
+

1

28
+

1

213
+ · · ·

)

+

(
1

25
+

1

210
+

1

215
+ · · ·

)

=

(
1

23
+

1

25

)

× ∑
k>0

(
1

25

)k

=
5

31
.

7A neighbourhood of σ = σ0σ1 . . . is the set of all sequences which share the first n symbols with σ , for

some n ∈ N.
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The orbit, of period 5, is obtained by applying repeatedly the map B to this rational

number:
5

31
7→ 10

31
7→ 20

31
7→ 9

31
7→ 18

31
7→ 5

31
7→ · · · .

One can show that the periodic orbits are precisely the rational numbers in I with odd

denominator. It follows that the periodic points are dense in I.

By the same device, the rational numbers with even denominator give rise to eventually

periodic orbits, namely orbits which contain a periodic point (after which, all points must

be periodic). Moreover, the exponent of the prime 2 at denominator of the initial point is

equal to the amount of time it takes for the orbit to reach the first periodic point.

Now take any two points x = 0.σ0σ1σ2 . . . and x′ = 0.σ ′
0σ ′

1σ ′
2 . . .. The point y given

by 0.σ0σ1 . . .σN−1σ ′
0σ ′

1σ ′
2 . . . is close to x:

|x− y| =

∣
∣
∣
∣

1

2N+1
(σN −σ ′

0)+
1

2N+2
(σN+1 −σ ′

1)+ · · ·
∣
∣
∣
∣

6
1

2N+1
+

1

2N+2
+ · · ·= 1

2N
.

By choosing N large enough, we can make |x− y| as small as we please. But after N

iterations, i.e., after N symbol shifts, y is mapped to x′. Thus we have an orbit which

starts arbitrarily close x and eventually reaches x′. (We say that the Bernoulli map is

topologically transitive, see p. 42.)

Exercise 4.3. Characterise all points in I whose ω-limit set under B is the origin.

Exercise 4.4. Let n > 3 be an odd integer, and consider the periodic orbit of B with initial

condition 1/n. Show that the maximum period such an orbit can have is n−1, and this can

only occur if n is a prime number. Characterise these orbits geometrically. (The existence

of infinitely many orbits of this type is an open problem.)

4.2 Expansive Markov maps

We want to generalise the construction developed in the previous section. Let x0 =

0.σ0σ1σ2 . . . be the initial condition of an orbit of the Bernoulli map B. The first symbol

σ0 tells us if x0 <
1

2
or x0 >

1

2
. The second symbol σ1 provides the same information for

the point B(x0), and so on. Thus we consider the following partition of the interval I:

I0 =
[
0,

1

2

)
I1 =

[1

2
,1
)
.
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The binary digits of the initial condition x0 are related to the points in the orbit as follows:

σt = k ⇔ Bt(x0) ∈ Ik.

Let I = [a,b] be a closed interval. We denote the interior (a,b) of I by int(I) and

the length |b−a| of I by |I|. A collection of closed intervals {I0, I1, . . . , IN−1} is called a

partition of I if

I =
N−1⋃

k=0

Ik, and int(Ik)
⋂

int(Iℓ) = /0, k 6= ℓ.

Definition 4.1 A map f : I → I is called Markov map if there exists a partition {I0, I1, . . . , IN−1}
of I, with the property that, for all k, ℓ = 0, . . . ,N − 1, one of the following statements is

true:

i) int(Iℓ)∩ f (int(Ik)) = /0, ii) int(Iℓ)⊆ f (int(Ik)).

A partition with the above properties is called a Markov partition. A Markov map

sends boundary points of the Markov partition to boundary points.

Example 4.1 We consider the map

f : [0,1]→ [0,1] f (x) =

{
1−2x if 0 6 x 6 1

2

x− 1
2

if 1
2
< x 6 1.

1/2

1/2

I I0 1

We define the partition {I0, I1} as follows:

I0 = [0, 1
2
], int(I0) = (0, 1

2
)

I1 = [1
2
,1], int(I1) = (1

2
,1).

One verifies that

f (int(I0)) = (0,1) and f (int(I1)) = (0,
1

2
),



4 SYMBOLIC DYNAMICS 37

from which we have

f (int(I0))⊇ int(I0) f (int(I0))⊇ int(I1)

f (int(I1))⊇ int(I0) f (int(I1))∩ int(I1) = /0.

So it is not possible to reach I1 from I1 with a single iteration of the map, although it is

possible to return to I1 in two iterations.

Example 4.2 Let us modify the previous example as follows:

f : [0,1]→ [0,1] f (x) =

{
1−2x if 0 6 x 6 1

2
3
2
x− 3

4
if 1

2
< x 6 1.

1/2

3/4

The partition I0 = [0, 1
2
],

I1 = [1
2
,1] is not Markov. In-

deed f (int(I1)) = (0, 3
4
), so that

f (int(I1)) ∩ int(I1) = (1
2
, 3

4
) 6= /0,

and int(I1) 6⊆ f (int(I1)).

(Is there another partition which is a Markov partition?)

Definition 4.2 Let f be a Markov map. The N ×N matrix defined by

Akℓ =

{
1 if f (int(Ik))⊇ int(Iℓ)

0 if f (int(Ik))∩ int(Iℓ) = /0

is called topological transition matrix of f .

Thus we have Ak,ℓ = 1 if the transition Ik → Iℓ is permitted, and Ak,ℓ = 0 if the transition

is forbidden.

Example 4.3 Let us re-visit example 4.1

1/2

1/2

I I0 1

I0 → I0

I0 → I1

I1 → I0

I1 6→ I1

A =

(
1 1

1 0

)

.
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Definition 4.3 A Markov map f is said to be expansive (or expanding) if f is smooth

on the interior of each element of the Markov partition, and if there is λ > 1 such that

| f ′(x)|> λ for all x lying in the interior of any partition element.

It may happen that f is not expansive, but some iterate of f , say f n, is expansive, that

is, |( f n)′(x)|> λ > 1. The term expansive is often used in this weaker sense.

Example 4.4 Let us consider again example 4.3.

1/2

1/2

I I0 1

We have | f ′(x)| = 2 if x ∈ int(I0), but

| f ′(x)| = 1 if x ∈ int(I1). Nevertheless,

|( f 2)′(x)| = | f ′( f (x))|| f ′(x)| = 2 · 1 if x ∈
int(I1), as x ∈ I1 implies f (x) ∈ I0, i.e.,

f ′(x) = 1 and f ′( f (x)) = −2. In addition

|( f 2)′(x)| > 2 if x ∈ int(I0). Thus the map

is still expansive.

The idea of symbolic dynamics is as follows. We consider a map f with a partition

{I0, I1, . . . , IN−1} and symbols σ ∈ {0,1, . . . ,N − 1}. We assign to x0 ∈ I the symbol

sequence σ0σ1σ2 · · · according to the rule f n(x0) ∈ Iσn
. Then xn has symbol sequence

σnσn+1 · · · . In other words, the symbolic dynamics is just the left shift map.

For a Markov map with a Markov partition, we have a precise characterisation of the

symbolic sequences produced by the dynamics.

Definition 4.4 Let f be a Markov map with transition matrix A. A symbol sequence

σ0σ1σ2 . . . is called admissible if Aσn,σn+1
= 1, for all n > 0. The shift space Ω of f is the

set of all admissible symbolic sequences.

For the Bernoulli shift map all binary sequences are admissible [equation (20), p. 34].

I this case we speak of a full shift.

Example 4.5 Let us consider the following transition matrix:

A =

(
1 1

1 0

)

.

Then, any symbol sequences which contains the pair ‘11’ is not admissible, since A1,1 = 0.

For instance, the symbol sequence 0110010 . . . is not admissible. By contrast, any se-

quence without repeated 1s is admissible, for instance, the periodic sequence 001
︸︷︷︸

001 . . ..
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Theorem 4.1 Let f : I → I be a continuous expansive Markov map, and let Ω be the

corresponding shift space. Then there is a surjective map h : Ω → I such that, if x =

h(σ0σ1 . . .), then f n(x) ∈ Iσn
, for all n > 0.

We illustrate the idea of proof with the tent map:

T : [0,1]→ [0,1] T(x) = 1−|1−2x|. (21)

The partition I0 = [0, 1
2
] and I1 = [1

2
,1] is

Markov, with transition matrix

A =

(
1 1

1 1

)

.

We see that any binary symbol sequence is

admissible, and we have a full shift.

I I0 1

Now fix a symbol sequence, say 101 · · · . Using this sequence, we construct a recursive

sequence of intervals I1, I10, I101, . . . as follows. The interval I1 is an element of the Markov

partition, with |I1|= 1
2
.

Next we let I10 = I1 ∩ T−1(I0).

This is the set of x ∈ I such that

x ∈ I1 and T(x) ∈ I0. The interval

I10 is closed, we have |I10| = 1
2
· 1

2
,

I10 ⊆ I1, and T : I10 → I0 is bijective.

II

I 0

0 1

T   (I   )−1
0

I10

I
01

I101
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Likewise, let I101 = I10 ∩T−2(I1) = I1 ∩T−1(I01): this is the set of x ∈ I such that

x ∈ I1, T(x) ∈ I0, and T2(x) ∈ I1.

The interval I101 is closed, we have |I101| = 1
2
· 1

2
· 1

2
, I101 ⊆ I10, and T : I101 → I01

is bijective. Continuing this process, we obtain an infinite nested sequence of closed

intervals:

I1 ⊇ I10 ⊇ I101 ⊇ ·· ·
of length 1/2,1/22,1/23, . . .. Since the length of these intervals tends to zero, their in-

tersection is the unique point x ∈ I such that Tk(x) ∈ Iσk
for all k. Now choose x′ ∈ I.

Since {I0, I1} is a partition, there exists a symbol sequence such that Tk(x′) ∈ Iσk
. Then

|Tn(x′)−Tn(x)| = 2n|x′− x| for any n, that is, x′ = x. Thus, the symbolic dynamics is

onto.

Now we see how the proof of theorem 4.1 will develop for a general Markov map f .

Let σ0σ1σ2 . . . be an admissible symbol sequence. Then

• Admissible implies int(Iσ1
)⊆ f (int(Iσ0

)).

• Continuity of f implies Iσ1
⊆ f (Iσ0

). Thus Iσ0σ1
= Iσ0

∩ f−1(Iσ1
) 6= /0, the interval

Iσ0σ1
is closed, and f : Iσ0σ1

→ Iσ1
is one to one. Clearly, Iσ0σ1

⊆ Iσ0
.

• f expansive means |Iσ1
|= | f (Iσ0σ1

)|> λ |Iσ0σ1
|. Thus |Iσ0σ1

|6 1

λ
|Iσ1

| (6 1

λ 2
|I|).

• By induction ({Iσ0σ1
} is again a Markov partition, etc.), we obtain a nested sequence

of closed intervals (the so-called cylinder sets) Iσ0
⊇ Iσ0σ1

⊇ Iσ0σ1σ2
⊇ . . ., where

|Iσ0
| 6 1

λ
|I|, |Iσ0σ1| 6

1

λ 2
|I|, . . . . Thus ∩n>0Iσ0σ1...σn

contains one point x and

f k(x) ∈ Iσk
for k > 0.

• Uniqueness follows from expansivity: if both x and x′ obey f k(x)∈ Iσk
and f k(x′)∈

Iσk
for k > 0, then |I|> | f k(x)− f k(x′)|> λ k|x−x′|. This implies that |x−x′| → 0,

since λ k → ∞.

• Surjectivity follows from expansivity and the sets being a partition.

(Fill in all details.)
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Example 4.6 We consider again example 4.1.

f (x) =

{
1−2x, x ∈ I0

x− 1
2
, x ∈ I1

I0 =

[

0,
1

2

]

, I1 =

[
1

2
,1

]

.

1/2

1/2

I I0 1

This is an (eventually) expansive Markov

map, with transition matrix

A =

(
1 1

1 0

)

.

The periodic orbits are the admissible periodic symbol sequences:

0000 . . . fixed point

010101 . . . 101010 . . . minimal period two

001001 . . . 010010 . . . 100100 . . . minimal period three.

Let us compute the period-two orbit {x0,x1} with

x0
∼= 010101 . . . ∈ I0 x1

∼= 101010 . . . ∈ I1.

Imposing periodicity, we obtain the system of equations

x1 = f (x0) = 1−2x0

x0 = f (x1) = x1 − 1
2

with solution

x0 =
1

6
x1 =

2

3
.

In general, a periodic code will produce an affine equation with rational coefficients. So

all periodic points are rational numbers.

Since the boundaries of the Markov partition are mapped onto boundary points, it

follows that the boundary is contained in the stable set of a periodic orbit. This feature

persists in higher-dimensional diffeomorphism, like the cat map. Segments of the stable

and unstable manifold determine a Markov partition, and since the map is invertible, the

symbolic dynamics results in doubly infinite symbol sequences, acted upon by a two-

sided symbol shift. Many of the statements we have made in the one-dimensional case

are valid for general hyperbolic dynamical systems.
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5 Chaos

It is counter-intuitive that a dynamical system with a deterministic rule of evolution can

display features that make it resemble a random process. The notion of sensitivity on ini-

tial conditions will resolve this apparent paradox. We now introduce the main ideas of the

so-called chaotic dynamics, using simple one-dimensional maps for illustration. As the

detailed description of individual orbits becomes impractical —or plainly impossible—

our attention shifts to the statistical properties of large collections of orbits.

5.1 Topological chaos

Consider the map f : [−1,1]→ [−1,1]

y = f (x) =
3
√

3

2
x(1− x2).

Clearly, positive (negative) initial condi-

tions x0 > 0 (x0 < 0) generate non-negative

(non-positive) orbits xn > 0 (xn 6 0), since

f ([0,1]) = [0,1] and f ([−1,0]) = [−1,0].

We can ‘decompose’ f into two maps f1 :

[0,1]→ [0,1] and f2 : [−1,0]→ [−1,0].

Definition 5.1 A map f : M → M is said to be topologically transitive if for any open

subsets A,B ⊆ M there exists some n > 0 such that f n(A)∩B 6= /0.

f
f

f  (A)
n

A
B

Given any pair of points, there exists a fi-

nite orbit which connects these points with

arbitrary precision.

Example 5.1 The map f (x) = 3
√

3
2

x(1− x2) is not topologically transitive. Choose any

A ⊆ [−1,0], say A = (−1
2
,0) and B ⊆ [0,1], say B = (1

2
,1). Then f n(A) ⊆ [−1,0] as

f ([−1,0]) = [−1,0] and f n(A)∩B = /0 for all n > 0.
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Example 5.2 The map f (x) ≡ x+α (mod 1), where α ∈ R, is transitive if and only if

α 6∈Q.

Example 5.3 The Bernoulli shift map is topologically transitive, in a stronger sense than

definition 5.1 —see end of section 4.1.

Example 5.4 The tent map T given in (21) is topologically transitive on [0,1]. We re-

call that (see proof of proposition 4.1) using the Markov partition I0 = [0, 1
2
], I1 = [1

2
,1],

the cylinder sets Iσ0σ1...σn−1
yield a partition as well, with each part having length 2−n.

Thus, if A ⊆ [0,1] is an open set, then A contains at least one cylinder set Iσ0σ1...σn−1

with suitable symbol string σ0σ1 . . .σn−1, for sufficiently large value of n. Therefore

Tn(A)⊇ Tn(Iσ0σ1...σn−1
) = [0,1] and Tn(A)∩B = B 6= /0 for any open set B.

Consider two nearby initial conditions x0 and x′0, with |x0 − x′0|< ε for some small ε .

Then the distance between the first iterates is |x1−x′1|= | f (x0)− f (x′0)|= | f ′(y)||x0−x′0|,
for some y lying between x0 and x′0. The distance shrinks if | f ′(y)| < 1, but grows if

| f ′(y)| > 1. In the latter case |xn − x′n| could become quite large, say, larger than some

positive quantity r, even if the initial distance ε is very small. This is the so-called sensi-

tive dependence on initial conditions (popularly named the ‘butterfly effect’).

x

x

x

x

x

x0

0

1

1

n

n

’
’

’

Definition 5.2 A map f : M →M is said to have sensitive dependence on initial conditions

if there exists an r > 0 such that for every x ∈ M and ε > 0, there exists a point y in a open

ε-neighbourhood of x, and an n > 0, such that | f n(x)− f n(y)|> r.

Example 5.5 The Bernoulli shift map B has sensitive dependence on initial conditions.

Let x ∈ [0,1) and ε > 0 be given. Choose n such that 2−n < ε and y such that the first n

binary digits of y agree with those of x, while all remaining digits are 0 if the (n+ 1)th

digit of x is 1, and 1 otherwise. Such a y is in an ε-neighbourhood of x, while Bn(x) and

Bn(y) have the property that |Bn(x)−Bn(y)|> 1/2, as easily verified. So sensitivity holds

with r = 1/2.
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Example 5.6 The tent map T(x) = 1−|2x−1| has sensitive dependence on initial condi-

tions on [0,1]. Indeed, let x ∈ [0,1], ε > 0, and let Uε(x) be an open ε-neighbourhood of

x. Denote by σ0σ1σ2 · · · the symbol sequence of x with respect to the (canonical) Markov

partition I0 = [0, 1
2
], I1 = [1

2
,1].

If we choose n ∈ N such that 2−n < ε/2,

we have that Iσ0σ1...σn−1
⊆ Uε(x). By defini-

tion of the symbol sequence Tn(x) ∈ Iσnσn+1
.

Denote by σn the complementary symbol of

σn (σn = 1 if σn = 0, and vice-versa). Then

Iσ0σ1...σn−1σn0 ⊆ Iσ0σ1...σn−1
⊆ Uε(x) and for

y ∈ Iσ0σ1...σn−1σn0 ⊆ Uε(x) we have Tn(y) ∈
Iσn0, i.e., |Tn(x)−Tn(y)|> 1/4. Thus sensi-

tivity holds with the choice r = 1/4.

I I I I00 01 11 10

y x

σ  ...σI
0 n−1

Definition 5.3 A map f : M → M is said to be chaotic (in the topological sense) if f

i) is topologically transitive;

ii) has sensitive dependence on initial conditions.

For an expanding Markov map, topological chaos follow automatically if the topolog-

ical transition matrix is transitive, namely if there exists n ∈ N such that An has positive

entries. In this case all transitions are possible for a suitable iterate of the map, and ex-

pansivity guarantees sensitivity on initial conditions.

The definitions of sensitivity, transitivity and topological chaos may also be applied

to restricted domains in phase space, such as an invariant set or a recurrent set (surface of

section). This often avoids trivial constraints.

5.2 Invariant measures

Consider the orbit (x0,x1,x2, . . .) of a map f : I → I. How are the points of the orbit

distributed? Let {Bk} be a partition of I into small intervals. We construct a histogram,

by determining the fraction of the points that lie in each Bk:
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pk(x0,N) =
#{n : n < N, f n(x0) ∈ Bk}

N
=

1

N

N−1

∑
n=0

χBk
(xn),

where χBk
is the characteristic function of the set Bk. Suppose that the expression above

converges for large N, and that its limit is ‘independent’ from x0 (in a sense to be made

precise later). Under such conditions, the limit can be characterised by a density function

ρ : I → R:

pk = lim
N→∞

1

N

N−1

∑
n=0

χBk
(xn) =

∫

I
χBk

(x)ρ(x)dx. (22)

Any integrable function h : I →R can be approximated arbitrarily well by a step-function,

namely, by a linear combination of characteristic functions. Hence, for any integrable

function h, we have

lim
N→∞

1

N

N−1

∑
n=0

h(xn) =
∫

I
h(x)ρ(x)dx .

Assuming (22), we derive some properties of ρ . By construction, for all x0 and N we

have

∑
k

pk(x0,N) = 1 hence ∑
k

pk = ∑
k

lim
N→∞

p(x0,N) = lim
N→∞

∑
k

p(x0,N) = 1.

It follows that

1 = ∑
k

∫

I
χBk

(x)ρ(x)dx =
∫

I
∑
k

χBk
(x)ρ(x)dx =

∫

I
ρ(x)dx.

Furthermore, if the limit exists, then its value cannot depend on whether we start with x0

or x1 = f (x0), namely:

lim
N→∞

1

N

N−1

∑
n=0

h(xn) = lim
N→∞

(

1

N

N−1

∑
n=0

h(xn+1)+
h(x0)−h(xN)

N

)

= lim
N=→∞

1

N

N−1

∑
n=0

h( f (xn)) .
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Thus ∫

I
h(x)ρ(x)dx =

∫

I
h( f (x))ρ(x)dx . (23)

Let us derive a functional equation for ρ .

For simplicity, assume that f has two in-

vertible branches, f0 : I0 → I, f1 : I1 → I.

Then

f−1
0 : I → I0

f−1
1 : I → I1.

I I0 1

f f0 1

We rewrite the right-hand side of (23) as

∫

I
h( f (x))ρ(x)dx =

∫

I0

h( f0(x))ρ(x)dx+
∫

I1

h( f1(x))ρ(x)dx.

We now use the substitutions x = f−1
0 (y), dx = |( f−1

0 )′(y)|dy in the first integral, and

x = f−1
1 (y), dx = |( f−1

1 )′(y)|dy in the second, to obtain

∫

I
h( f (x))ρ(x)dx =

∫

I
h(y)ρ( f−1

0 (y))
dy

| f ′0( f−1
0 (y))|

+
∫

I
h(y)ρ( f−1

1 (y))
dy

| f ′1( f−1
1 (y))|

=
∫

I
h(y)ρ(y)dy ,

where the last equality follows from (23). Thus

ρ(x) =
1

∑
i=0

1

| f ′( f−1
i (x))|

ρ( f−1
i (x)) = ∑

y∈ f−1(x)

1

| f ′(y)|ρ(y)

This equation is called the Perron-Frobenius equation.
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Example 5.7 Let un consider the tent map (21). We have

x

x/2 1−x/2

T(x) = 1−|1−2x|
T−1(x) =

{x

2
,1− x

2

}

|T′(x)| = 2.

The Perron-Frobenius equation reads:

ρ(x) =
1

2
ρ
(x

2

)

+
1

2
ρ
(

1− x

2

)

.

The constant function ρ(x) = 1 is an invariant density of the tent map since
∫ 1

0 1dx = 1

and
1

2
ρ
(x

2

)

+
1

2
ρ
(

1− x

2

)

=
1

2
+

1

2
= ρ(x).

This means that the points of almost all orbits are uniformly distributed.

The density ρ may be considered as a dynamically invariant probability distribution.

Indeed:

�
�
�
�

�
�
�
�

��
��
��
��

x/2 1−x/2
(1−x/2) dx/2(x/2) dx/2ρ ρ

dx/2 dx/2

dx
x

(x) dxρ
• ρ(x)dx: probability to find a point in

(x,x+dx).

• ρ( x
2
) dx

2
+ ρ(1 − x

2
) dx

2
: probability to

find a point to be mapped into (x,x+

dx).

• invariance condition

ρ(x)dx = ρ
(x

2

) dx

2
+ρ

(

1− x

2

) dx

2
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To make this kind of arguments rigorous we need the notion of measure. Let us briefly

recall the main ideas (here we assume some familiarity with this concept). A measure µ is

a function which assigns a non-negative weight µ(A) to any element of a collection B of

subsets A of the phase space M. Such a collection is a σ -algebra on M, namely it contains

M, and it is closed under taking of complement and countable unions. The function µ is

countably additive (meaning that µ(∪iAi) = ∑i µ(Ai) if the sets Ai are pairwise disjoint),

and µ( /0) = 0. If µ(M) = 1, then we speak of a probability measure. A set B ∈ B is said

to have zero measure (full measure) if µ(B) = 0 (µ(B) = 1). The Lebesgue measure λ is

derived by assigning to an interval I with end-points a and b, its length λ (I) = |b−a|, and

then extending the definition of λ to a larger family of sets by taking limits of measures of

unions of intervals. For any non negative Lebesgue integrable function ρ , the expression

µ(A) =
∫

A
ρ(x)dx (24)

defines a measure (which is said to be absolutely continuous with respect to the Lebesgue

measure). The function ρ is called the density of µ . In what follows the measures are

probability measures and all the maps are considered to be continuous.

Definition 5.4 A measure µ on M is an invariant measure for a map f : M → M if for

any B ∈ B, we have µ( f−1(B)) = µ(B).

If the invariant measure has a density (i.e., if the measure is absolutely continuous with

respect to the Lebesgue measure) and if the map is sufficiently smooth (e.g., piecewise

smooth and expanding), then the density obeys the Perron-Frobenius equation. Thus,

example 5.7 shows that the Lebesgue measure is in fact an invariant measure of the tent

map.

Definition 5.5 A map f : M → M is ergodic with respect to an invariant measure µ if for

any set B ∈ B, such that B = f−1(B), we have either µ(B) = 0 or µ(B) = 1

Thus the phase space of an ergodic map cannot be decomposed into two invariant sets,

each having positive measure.

Example 5.8 The Lebesgue measure is an ergodic measure of the tent map T : [0,1] →
[0,1], T(x) = 1−|2x−1|, although this is rather difficult to show. There are other ergodic
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measures. Consider the Dirac measure at the unstable fixed point x∗ = 0, that is, the

measure µ0 defined by

µ0(A) =

{

1 if 0 ∈ A

0 if 0 6∈ A.

This measure is an invariant measure of the tent map8. Indeed, if 0 ∈ B, then 0 ∈ T−1(B)

and µ0(B) = µ0(T
−1(B)) = 1. If 0 6∈ B, then 0 6∈ T−1(B), and µ0(B) = µ0(T

−1(B)) = 0.

Since the Dirac measure assigns only the values 0 and 1, ergodicity follows.

The following theorem clarifies the importance of ergodic maps.

Theorem 5.1 (Birkhoff ergodic theorem) Let f : M → M be a measure-preserving er-

godic map with invariant measure µ . Then for any (measurable) function h : M → R and

for µ-almost every initial conditions, we have

lim
n→∞

1

n

n−1

∑
k=0

h( f k(x)) =
∫

M
h(x)dµ . (25)

(The expression ‘µ-almost every initial conditions x’ means for all x in a subset of M

having µ-measure 1.)

Thus for an ergodic system, the arithmetical mean of the values of a function along an

orbit —called a time-average— is almost surely equal to the integral of such a function

with respect to the invariant measure —called a phase (space) average.

Example 5.9 For the tent map with the Dirac measure µ0, the meaning of the ergodic

theorem 5.1 is rather trivial. Clearly, for x = 0 we have T(0) = 0, and therefore

h(0) = lim
n→∞

1

n

n−1

∑
k=0

h(Tk(0)) =
∫ 1

0
h(x)dµ0 .

Any subset which does not contain x = 0 has zero measure (with respect to µ0). By

contrast, the theorem is highly nontrivial if we consider the Lebesgue measure (taking

ergodicity for granted). Then the Birkhoff ergodic theorem implies that for Lebesgue

almost every initial condition the time average over the orbit exists, and it can be computed

by an integral. That explains as well why one is primarily interested in special types of

ergodic measures, particularly measures which are absolutely continuous with respect to

the Lebesgue measure.

8The measure µ0 is not absolutely continuous, that is, it cannot be written in the form (24) for some

density ρ .
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If (x0,x1,x2, . . .) and (x′0,x
′
1,x

′
2, . . .) are two orbits of a (piecewise) smooth map f :

I → I on an interval then, as long as the difference x′k − xk is sufficiently small, we have

x′k+1 − xk+1 ≈ f ′(xk)(x
′
k − xk), and applying the chain rule of differentiation we obtain

|x′n − xn| ≈ |( f n)′(x0)||x′0 − x0|=
n−1

∏
k=0

| f ′(xk)||x′0 − x0|

= exp

(
n−1

∑
k=0

ln | f ′(xk)|
)

|x′0 − x0|

= exp

(

n× 1

n

n−1

∑
k=0

ln | f ′(xk)|
)

|x′0 − x0| .

Therefore the so-called Lyapunov exponent

Λ(x) = lim
n→∞

1

n

n−1

∑
k=0

ln | f ′( f k(x))| (26)

quantifies the exponential rate at which nearby orbits separate. The above expression

is of the type (25) with h(x) = | log( f ′(x))|. Hence, if f is ergodic with respect to an

invariant measure µ , and if h(x) = ln | f ′(x)| is µ-integrable over M, then Birkhoff ergodic

theorem ensures that the limit (26) exists almost everywhere, and is independent from x.

Under this circumstance, Λ(x) = Λ becomes a property of the system, and we can take

the condition Λ > 0 as an alternative criterion for sensitivity. This result can be extended

to higher-dimensional systems, but the generalisation is nontrivial (see e.g., the so-called

multiplicative ergodic theorem).

Example 5.9 illustrates the limitations of the Birkhoff ergodic theorem as a set of

full µ measure could be actually quite ‘small’. One would prefer having the property of

the ergodic theorem to be valid for a large set of initial conditions, say for a set of full

Lebesgue measure (even if the measure µ has no density). That motivates

Definition 5.6 An invariant measure µ of a map f : M → M is called a physical measure

if

lim
n→∞

1

n

n−1

∑
k=0

h( f k(x)) =
∫

h(x)dµ .

holds for Lebesgue almost every initial condition x ∈ M.

For hyperbolic dynamical systems one can not only show the existence of such measures

but one can construct such measures using the hyperbolic structure.
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6 Further reading

S H Strogatz, Nonlinear Dynamics and Chaos, Perseus Books Publishing,

Cambridge MA (1994).

One of the friendliest introductions to dynamical systems. An ideal place for a leisurely

start, but lacking in mathematical sophistication.

J Guckenheimer and P Holmes, Nonlinear Oscillations, Dynamical Systems,

and Bifurcations of Vector Fields, Springer-Verlag, New York (1983).

One of the classic textbooks, which includes most of the material of this course.

C Robinson, Dynamical Systems: Stability, Symbolic Dynamics and Chaos,

CRC Press, Boca Raton (1995).

A detailed and self-contained presentation. As the title suggest, it is very pertinent to the

present course.

V I Arnold, Ordinary Differential Equation, The MIT Press, Cambridge (1980).

An original and lively introduction to the modern qualitative theory of ordinary differen-

tial equations, with a strong geometrical flavour. Linear systems are treated exhaustively,

and there is an introduction to differential equations on manifolds. The overlap with the

present course is limited.

A Katok and B Hasselblatt, Introduction to the Modern Theory of Dynamcal

Systems, Cambridge University Press, Cambridge (1995).

A voluminous comprehensive text, with a strong emphasis on topology. An ideal refer-

ence for clarifying issues of rigour, but not suitable for a general audience.


