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Abstract. We study time-reversal symmetry in dynamical systems with finite phase space,
with applications to birational maps reduced over finite fields. For a polynomial automor-
phism with a single family of reversing symmetries, a universal (i.e., map-independent) distri-
bution function R(x) = 1−e

−x(1+x) has been conjectured to exist, for the normalized cycle
lengths of the reduced map in the large field limit [20]. We show that these statistics corre-
spond to those of a composition of two random involutions, having an appropriate number
of fixed points. This model also explains the experimental observation that, asymptotically,
almost all cycles are symmetrical, and that the probability of occurrence of repeated periods
is governed by a Poisson law.

1. Introduction

This paper is concerned with time-reversal symmetry in dynamical systems with finite
phase space, with applications to rational maps over finite fields. The concept of reversibility
originated in the theory of smooth maps and flows on manifolds [5, 6, 4]. In this paper, a
map L is said to be reversible if it is the composition of two involutions G and H = L ◦ G.
The involution G conjugates the map to its inverse, namely

(1) G ◦ L ◦ G−1 = L−1 .

(For background information on reversibility and its generalization, see [11, 14, 18], and
references therein.) The nature of the fixed sets of G and H, respectively FixG and FixH,
plays a key dynamical role in organizing the dynamics of a reversible map.

The reversibility property can be interpreted in purely algebraic terms, and in particular it
applies to reversible algebraic maps L of any dimension n over any field K, namely reversible
maps defined by rational functions with coefficients in K. If the field K = Fq is a finite field
with q elements —where q is the power of a prime number p— we are led to the study of
reversibility on a phase space with N = qn points. (For background reference on finite fields,
see [13].) More meaningful is the case in which K is an algebraic number field, e.g., K = Q.
The same map L may then be reduced over infinitely many distinct finite fields, of increasing
size.

We are concerned here with the case where the reductions of the component involutions G
and H are involutory permutations of the phase space of N = qn points, so that the reduction
of their composition L yields a permutation of this space. In reduction, the fixed sets FixG
and FixH will now be finite. Examples arising from dimension n = 2 are the reversible planar
polynomial automorphisms [7, 1, 8] which include the well-known area-preserving Hénon map
L1 = H1 ◦ G1,

(2) G1 : (x, y) 7→ (y, x) H1 : (x, y) 7→ (x,−y + x2 + a) a ∈ K.
1
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If K = Fp, we find
#FixG1 = #FixH1 = p.

Reversible polynomial automorphisms in any dimension provide other examples. But cer-
tain rational maps in n dimensions can induce permutations, e.g., L2 = H2 ◦ G2 of [17]

G2 : (x, y, z) 7→ (x + e(2y − k)(z + e(y − k)), k − y, z + e(2y − k)) e, k ∈ K

H2 : (x, y, z) 7→ (y (2 − 2x/F + x2/F 2), x/F,−z) F = 1 + (1 − y)2.

If K = Fp, with p ≡ 3 (mod 4), the denominator in H2 is non-vanishing and

#FixG2 = p2, #FixH2 = p.

The representability of G and H over a finite field Fq imposes some restrictions on the
parameters present in the involutions. For instance, if in (2), we take a ∈ Q, say, we are led
to consider the set Pa of the prime divisors of the denominator of a. Then the involution H1 is
representable over any finite field whose characteristic is not in Pa, such as the field of integers
modulo a prime p 6∈ Pa. Additionally, one must verify that G and H remain involutions when
reduced to a finite field. This is an instance of the property of good reduction (for a discussion
of reduction in arithmetic dynamics, see [21, chapter 2]).

Representability assumed, the reduction of an algebraic map can be associated with in-
teresting asymptotic phenomena, concerning the statistical behaviour of the periodic orbits
in the large field limit. A main theme in this area of research is to ascertain whether such
phenomena are universal, namely independent from the map, depending only on its struc-
tural properties e.g., reversibility. Furthermore, in reduction, the original dimension n of the
underlying algebraic map ceases to be important as the finite phase space does not inherit
the topology of the continuum Rn or Cn.

If the reduction of a reversible algebraic map is a permutation, it has been shown [20] that
over finite fields, reversibility manifests itself combinatorially. In particular, the number of
symmetric periodic orbits —those invariant under G— equals

(3) (#FixG + #FixH)/2.

Strong experimental evidence [20, 9] suggests that the symmetric periodic orbits dominate
the statistics over the asymmetric ones1, so that (3) asymptotically counts the number of
periodic orbits in the permutation. Furthermore, numerical experiments [20, 9] suggest there
exists an asymptotic (large fields) distribution of the periods of the orbits, given by

(4) R(x) = 1 − e−x(1 + x) x ≥ 0.

(In these experiments, ‘large fields’ refers to the limit Fp, p → ∞; there are other asymptotic
regimes, see remark (3) in section 4.) The distribution (4) describes the limiting probability
of the set of points belonging to cycles with scaled period not exceeding x. This distribution
is believed to be universal, within the class of reversible maps with a single time-reversal
symmetry. By contrast, maps which are not reversible appear to behave like random permu-
tations [20]; the associated distribution, also conjectured to be universal, is markedly different
from that of reversible maps. 2 Finally, there are asymptotic period distributions for inte-
grable systems [19, 10]. Even though these distributions are map-dependent, they all feature
a distinctive ‘quantization’ of periods. With appropriate scaling, the allowed periods occur

1This is in sharp contrast with the case of maps with real or complex coordinates [14].
2The inadequacy of random permutations as a model for reversible maps on a discrete space was noted as

far back as [16].
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at the reciprocals of the natural numbers, resulting in step-like distribution functions. These
various asymptotic phenomena have led to the development of simple and effective tests for
detecting integrability and reversibility in algebraic mappings [19, 20, 10].

In this paper we propose a combinatorial model for the orbits, over a finite field, of a map
with a single family of reversing symmetries. Our model consists of the composition of two
random involutions. The size N of the space and the numbers #FixG and #FixH of fixed
points of each involution are the parameters of the model. By letting N increase, we build a
sequence of probability spaces. Under very general conditions, we derive the distribution (4)
found in [20, 9].

We prove the following theorem, which appears in section 2 as theorems 1 and 7.

Theorem A. Let (G,H) be a pair of random involutions of a set Ω with N points, and let
g = #FixG and h = #FixH. Let RN (x) be the expectation value of the portion of Ω
occupied by cycles of H ◦G with period less than 2xN/(g + h), computed with respect to the
uniform probability. If, with increasing N , g and h satisfy the conditions

(5) lim
N→∞

g(N) + h(N) = ∞ lim
N→∞

g(N) + h(N)

N
= 0

then for all x ≥ 0, we have the limit RN (x) → R(x), the distribution function in (4).
Moreover, almost all points in Ω belong to symmetric cycles.

This result is formulated in terms of the sequence g + h, and not of the two sequences
individually. The conditions on the growth rate of g+h are quite mild, hence the wide scope of
applicability of the theorem. If g and h do not grow at the same rate, an interesting dynamical
phenomenon occurs: asymptotically, almost all periodic orbits have even period (corollary 9).
For n-dimensional maps over the finite field Fq, one has N = qn, while g and h will typically
grow algebraically (see remark 1 of section 4). As mentioned above, increasing the dimension
does not introduce new difficulties, because the absence of a significant topological structure
makes the combinatorial model effectively dimension-independent. All that is needed is to
keep track of the possible cardinalities of the fixed sets of the two involutions.

In [20], experimental evidence from reductions of the Hénon map (2) suggested that the
probability of occurrence of several cycles with the same period followed a Poisson law, with
parameter depending exponentially on the (rescaled) period. These findings motivate the
study of the statistics of the occurrence of repeated periods in the random involutions model.
In section 3 we consider this question, and prove the following result.

Theorem B. With the notation of theorem A, let µ(t, i) be the probability that (G,H) has
i cycles of period t. Assume that the sequence

(6) f(N) =











gh

N
if t is odd

g2 + h2

2N
if t is even

has the (possibly infinite) limit
c = lim

N→∞
f(N)

and let

(7) y =
(t − 1)(g + h)

2N
− ln(f).
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Then, if c 6= 0 we have, as N → ∞

(8) µ(t, i) ∼ e−ααi

i!
α =

{

c if t is constant

e−y(t) if y is constant

while if c = 0 we have µ(t, i) ∼ δi, where δ is Kronecker’s delta.

As it will appear in the proof of theorem B, in the case of constant y, for convergence to a
Poisson distribution it is only required that f(N) 6→ 0, not the actual existence of a non-zero
limit c. We conclude section 3 by showing the agreement between the prediction of theorem
B with the actual repetitions µ(t, i) for a small t in the Hénon map. The latter are governed
by the roots (mod p) of certain polynomial functions of one variable, with a connection to
the Galois groups of these polynomials.

In section 4 we discuss the question of the asymptotic (large field) growth rate of the
parameters associated with a rational map over a finite field, namely the numbers g and h
of fixed points of the involutions. In this case N is the power of a prime number. We show
that the growth conditions of theorem A on g + h are easily satisfied, while f(N) in theorem
B depends algebraically on N , and all scenarios considered in the theorem can be realized.
Finally, we also sketch how the random involution model might be extended to the case of
reversible rational maps with singularities.

2. Composition of random involutions

Let N be a positive integer, and let g, h be integers in the range 1 ≤ g, h ≤ N such that
N − g and N − h are both even. We consider ordered pairs (G,H) of random involutions on
a set Ω of N points, which fix g and h points, respectively. Thus g = #FixG, h = #FixH,
and the cycle decomposition of G consists of g fixed points and (N − g)/2 two-cycles, and
similarly for H. For each pair (G,H) of involutions we consider the composition L = H ◦ G,
which is a reversible permutation of Ω.

Let G and H be the sets of all involutions with the given parameters. We regard the space

(9) E = E(g, h,N) = G× H

as a probability space, with the uniform probability. We define the random variable Pt : E →
R to be the fraction of the space Ω occupied by the t-cycles of the map H ◦ G, namely

(10) Pt =
1

N
#{x ∈ Ω : x has minimal period t under H ◦ G} t = 1, 2, . . . .

For given N , the sequence (Pt) has only a finite number of non-zero terms.
The main object under study is the distribution function

(11) RN (x) =

⌊xz⌋
∑

t=1

〈Pt〉 x ≥ 0

where ⌊·⌋ is the floor (greatest integer part) function, z is a scaling parameter to be specified
below, and the average 〈·〉 is computed with respect to the uniform probability on E (i.e.,
〈Pt〉 = (#E)−1

∑

E
Pt). If ⌊xz⌋ = 0, the sum is empty, and RN (x) is defined to be zero.

The asymptotic parameter is N . We shall assume that g = g(N) and h = h(N) are positive
integer sequences satisfying (5). These sequences determine the sequence of probability spaces
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to be considered. To get non trivial asymptotics, the scaling parameter z must grow with N
at an appropriate rate. To this end, we define the rational sequence

(12) z(N) =
2N

g(N) + h(N)

which, due to (5), diverges to infinity. The quantity z(N) is the ratio of the size of the
phase space to the number of symmetric cycles —cf. equation (3). Its full significance will be
clarified at the end of this section (corollary 8).

The main purpose of this section is to prove theorem A of the introduction, which is an
amalgamation of theorems 1 and 7.

Theorem 1. The distribution function RN defined in (11), with scaling sequence z(N) given
by (12), admits the following limit

lim
N→∞

RN (x) = R(x) = 1 − e−x(1 + x) x ≥ 0.

It turns out that to establish theorem 1 it suffices to consider symmetric orbits only,
because they provide the dominant contribution to the probability 〈Pt〉 in equation (11) —
see theorem 7 below. Accordingly, we separate out the contribution deriving from symmetric
and asymmetric cycles as follows

(13) Pt = P
(s)
t + P

(a)
t .

We begin with symmetric cycles of odd period t = 2k − 1. It is known [4, 5, 11, 14, 18]
that a cycle is of this type if and only if it corresponds to an orbit of L starting from FixG
and reaching FixH for the first time after k iterations. Here and below, we follow the
cycle dynamics keeping track of the action of G and H separately, which leads to a maximal
sequence of 2k points

(14) (x1, y1, . . . , xk, yk) yj = G(xj), xj+1 = H(yj) k ≥ 1, j = 1, . . . , k

with the property that all xj are distinct. We call such a sequence a k-arc. In the case of odd
period, we have the condition

(15) x1 ∈ FixG, yk ∈ FixH

(hence y1 = x1) together with the requirement that the sequence contains t = 2k − 1 distinct
points (see figure 1). We must now determine the total number of k-arcs of this type generated
by the elements of E.

Throughout the paper, the underlined exponent will denote the falling factorial powers

(16) n0 = 1 na = n(n − 1)(n − 2) · · · (n − a + 1), a ≥ 1.

The information we require is contained in the following two lemmas.

Lemma 2. Let E = E(g, h,N) be as in equation (9). Then

(17) #E(g, h,N) =
1

2N−(g+h)/2

(N !)2

g!h! ((N − g)/2)! ((N − h)/2)!
.

Proof. The cardinality of the set of all involutions on N points, with g fixed points, is given
by

(

N

g

)

(N − g)!

2(N−g)/2((N − g)/2)!
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Figure 1. Construction of a 4-arc corresponding to a 7-cycle. The solid and dashed
lines denote the action of G and H , respectively. The orbit of L = H ◦G from FixG
to FixH is represented by white circles; the black circles represent the return orbit
from FixH to FixG.

where the first term gives the number of ways of choosing the fixed points, and the sec-
ond counts the number of ways of partitioning the remaining points into unordered pairs.
Multiplying the expression above with the corresponding expression for h fixed points, we
obtain

#E(g, h,N) =
1

2N−(g+h)/2

(N !)2

g!h! ((N − g)/2)! ((N − h)/2)!

as desired.

Lemma 3. Let P
(s)
t be as above. The following holds

(18) 〈P (s)
2k−1〉 =

2k − 1

N
N2k−1 E2k−1 k ≥ 1

where

E2k−1 =
#E(g − 1, h − 1,N − 2k + 1)

#E(g, h,N)

=



















gh

N2
if k = 1

gh

(N2k−1)2

k−2
∏

j=0

(N − g − 2j)(N − h − 2j) if k > 1.
(19)

Proof. Let (x1, y1, . . . , xk, yk) be the required k-arc (see equation (14) and figure 1). The
initial point x1 belongs to FixG, so that y1 = x1. The first half of the cycle consists of the
points x1, . . . , xk, the second half of the points yk, . . . , y2, giving 2k−1 distinct points in total.
Hence the desired number of arcs is

N2k−1.

Each k-arc occurs with multiplicity determined by the unconstrained action of the pairs of
involutions on the rest of the space, which is given by

#E(g − 1, h − 1,N − 2k + 1).



COMBINATORIAL MODEL FOR REVERSIBLE MAPS 7

Thus the average value of P
(s)
2k−1 is given by

〈P (s)
2k−1〉 =

2k − 1

N
N2k−1 #E(g − 1, h − 1,N − 2k + 1)

#E(g, h,N)
.

Finally, the product formula for E2k−1 is obtained from lemma 2 with a straightforward
computation.

By analogy with equation (11), we define the distribution function R(s,o)
N for odd symmetric

cycles as

(20) R(s,o)
N (x) =

⌊(xz+1)/2⌋
∑

k=1

〈P (s)
2k−1〉 x ≥ 0.

We have

Theorem 4. For any sequences g, h satisfying (5), with z as in (12), we have, as N → ∞

R(s,o)
N (x) ∼ 2gh

(g + h)2
R(x) x ≥ 0.

Note that the limit distribution is symmetrical in g and h. To prove theorem 4 we need a
lemma.

Lemma 5. Let g(N), h(N) be as in (5), let m = m(N) be a positive integer sequence, and
let

λ = λ(N) =
(

1 − g

N

)

(

1 − h

N

)

Sm =

m
∑

k=1

(2k − 1)λk−1.

Then, as N → ∞

(21) Sm ∼ 2

κ2

[

1 − e−mκ(mκ + 1)
]

κ =
g + h

N
.

Proof. For fixed N , m and λ are fixed, and the quantity Sm is the sum of an arithmetico-
geometric progression, with value

Sm =
1

(1 − λ)2

{

1 + λ − λm
[

2m(1 − λ) + 1 + λ
]

}

.

As N → ∞, we have, from (5)

λ ∼ 1 (1 − λ) ∼ κ ln(λ) ∼ −κ

so we find

Sm ∼ 1

κ2

[

2 − em ln(λ)(2mκ + 2)
]

∼ 2

κ2

[

1 − e−mκ(mκ + 1)
]

as desired.

Proof of theorem 4. From lemma 3, we find, for k ≥ 1

〈P (s)
2k−1〉 =

gh(2k − 1)

N

∏k−2
j=0(N − g − 2j)(N − h − 2j)

N2k−1

=
gh(2k − 1)

N(N − (2k − 2))

k−2
∏

j=0

(

1 − g − 1

N − (2j + 1)

)(

1 − h

N − 2j

)

.(22)
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Now fix m, with 0 < 2m < N , and define

(23) λ− =

(

1 − g

N − m

)(

1 − h

N − m

)

λ+ =

(

1 − g − 1

N

) (

1 − h

N

)

.

For all k such that 1 ≤ 2k − 2 ≤ 2m, we have the inequalities

(24) λk−1
− <

k−2
∏

j=0

(

1 − g − 1

N − (2j + 1)

)(

1 − h

N − 2j

)

< λk−1
+

which, together with (22), give

(25)
gh(2k − 1)

N2
λk−1
− < 〈P (s)

2k−1〉 <
gh(2k − 1)

N(N − m)
λk−1

+ .

Summing over k, we obtain the bounds

(26) R− ≤
m

∑

k=1

〈P (s)
2k−1〉 ≤ R+,

where

R− =
gh

N2

m
∑

k=1

(2k − 1)λk−1
− R+ =

gh

N(N − m)

m
∑

k=1

(2k − 1)λk−1
+ .

Let now m = m(N) be a positive integer sequence such that

lim
N→∞

m(N) = ∞ m = o(N).

Then λ± ∼ λ and applying lemma 5, we obtain, as N → ∞

(27) R− ∼ R+ ∼ gh

N2
Sm ∼ 2gh

(g + h)2
[

1 − e−mκ(mκ + 1)
]

.

We now fix a non-negative real number x. For the convergence of the expression above, we
specialize the sequence m(N) as follows

(28) mκ = x or m(N) = ⌊xz(N)/2⌋
where κ and z were defined in equations (21) and (12), respectively. Due to (5), m(N) = o(N),
and for all sufficiently large N , we have 0 < m(N) < N/2. Hence (26) is valid, and our result
now follows from (20) and (27), noting that (xz(N) + 1)/2 ∼ xz(N)/2.

The sequence m(N) given in (28) could be defined by the more general requirement that the
sequence m(N)κ(N) converge to a positive real number c, where the limiting cases c = 0,∞
are excluded as they would lead to trivial distribution functions. We have set c = 1, for
normalization. We remark that the choice of this constant does not affect the coefficient of
the distribution function, which determines its limiting value for large arguments. This fact
will become relevant in the proof of theorem 1 below.

We now turn to even symmetric cycles, of period t = 2k. Each cycle of this type corresponds
to an orbit originating on FixG (or FixH), and returning to it for the first time after k
iterations of L. The arc associated to such a cycle (see equation (14)) is a (k + 1)-arc, with
the property that x1 and xk+1 are in FixG. Therefore x1 = y1 and xk+1 = yk+1, and the
total number of arcs of this type is equal to N2k/2, where the denominator 2 prevents arcs
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beginning and ending on FixG from being counted twice. The denominator 2 cancels with
the 2 in the period 2k, so we obtain

(29) 〈P (s)
2k,g〉 =

k

N
N2k E2k k ≥ 1

where

E2k =
#E(g − 2, h,N − 2k)

#E(g, h,N)

=



















g(g − 1)(N − h)

N(N − 1)2
if k = 1

g(g − 1)

N2k

k−2
∏

j=0

(N − g − 2j)

k−1
∏

j=0

(N − h − 2j) if k > 1.
(30)

Putting together equation (29) and (30), we obtain, for k ≥ 2

〈P (s)
2k,g〉 =

g(g − 1)k

N(N − (2k − 1))

k−2
∏

j=0

(

1 − g − 1

N − (2j + 1)

) k−1
∏

j=0

(

1 − h

N − 2j

)

to be compared with equation (22).

Exchanging g by h in the formulae above gives the twin quantity P
(s)
2k,h for 2k-cycles with

two points of FixH. The distribution function R(s,e)
N for even symmetric cycles is obtained

by adding the contributions from the two fixed sets

(31) R(s,e)
N (x) =

⌊xz/2⌋
∑

k=0

(

〈P (s)
2k,g〉 + 〈P (s)

2k,h〉
)

x ≥ 0.

An analysis very similar to that of theorem 4 leads to the following result, whose proof we
omit for the sake of brevity.

Theorem 6. For any sequences g, h satisfying (5), with z as in (12), we have, as N → ∞

R(s,e)
N (x) ∼ g2 + h2

(g + h)2
R(x) x ≥ 0.

Proof of theorem 1. From theorems 4 and 6 we deduce that the probability distribution
associated to symmetric cycles is given by

R(s,o)
N (x) + R(s,e)

N (x) ∼ 2gh + g2 + h2

(g + h)2
R(x) = R(x).

Because
lim

x→∞
R(x) = 1

this distribution function is properly normalized (cf. remarks following the proof of theorem
4), and so it accounts for all cycles.

It is implicit from theorem 1 that, asymptotically, asymmetric cycles have zero probability.
Asymmetric t-cycles of L = H ◦ G come in pairs, mapped to one another under G. They
correspond to t-arcs of the type

(32) (x1, y1, . . . , xt, yt) yj = G(xj) 6= xj, xj+1 = H(yj) 6= yj, j = 1, . . . , t
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i.e., they have 2t distinct entries. We can now determine the decay rate of the probability of
asymmetric cycles.

Theorem 7. Consider a composition of random involutions on a set of N points, whose fixed
sets satisfy (5). As N → ∞, the measure of the set of points that belong to asymmetric cycles
is asymptotic to (g(N) + h(N))−1; in particular, almost all cycles are symmetric.

Proof. Recall from (13) that P
(a)
t is the probability of finding an asymmetric t-cycle. We

compute its average over E:

〈P (a)
t 〉 =

N2t

N

#E(g, h,N − 2t)

#E(g, h,N)

=
1

N

t−1
∏

j=0

(

1 − g − 1

N − (2j + 1)

)(

1 − h

N − 2j

)

.(33)

From the above discussion, the right-hand side of this equation involves counting t-arcs like
(32). Note that the period of the orbit is not present as a factor. This is because it is absorbed
by the possibility to create t-arcs that are one and the same from (32) by cyclic permutations
of the {xj , yj} pairs (t possibilities) and the switch xj ↔ yj together with reversing the order
of the switched pairs (2 possibilities).

Let R(a)
N be the associated distribution function

R(a)
N (x) =

⌊xz⌋
∑

t=1

〈P (a)
t 〉.

We now proceed as in the proof of theorem, with λ± and z given by (23) and (12), respectively.
Summing the expression above over t in the appropriate range gives the bounds

R− ≤ R(a)
N (x) ≤ R+,

where

R− =
1

N

⌊xz(N)⌋
∑

t=1

λt
− R+ =

1

N

⌊xz(N)⌋
∑

t=1

λt
+.

This time the bounds are geometric progressions; as N → ∞, we find

R− ∼ R+ ∼ 1 − e−x

g(N) + h(N)
,

as desired.

The theorems of this section have some immediate consequences. Consider the sequence
z(N), defined in (12). Its denominator g(N) + h(N) is twice the number of symmetric
cycles [20, proposition 1], and from theorem 1, asymptotically, the symmetric cycles have full
measure. These considerations give the following characterization of z(N).

Corollary 8. Asymptotically, the sequence z(N) defined in (12) represents the average cycle
length of the map H ◦ G.

An immediate consequence of theorems 4 and 6 is the following.

Corollary 9. Let g, h be as above. If g(N) = o(h(N)) or h(N) = o(g(N)), then almost all
cycles of H ◦ G have even period.
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3. Occurrence of repeated periods

This section first gives the proof of theorem B, stated in the introduction. The asymptotic
relations (5) will be assumed to hold, together with the condition h = O(g). The latter
does not entail loss of generality, as we may always exchange g and h, which amounts to
considering the inverse mapping L−1. After the proof, we compare the results of theorem B
with the mechanism that determines the repetition statistics for small period in the Hénon
map (2).

Proof of theorem B. Let µ(t, i) be the probability that a randomly chosen (G,H) ∈ E
has exactly i cycles of period t. We wish to determine the asymptotic behaviour of µ; due to
theorem 7, it will suffice to consider symmetric cycles only.

We introduce some notation. Let γ be a t-cycle in Ω, and let Γ be any set of disjoint
t-cycles. We stipulate that the first point of each cycle belongs to some symmetry line; then
there are

(34)
N it

i!

ways of choosing such cycles. We define

(35) Eγ = {(G,H) ∈ E : γ is a t-cycle of (G,H)} EΓ =
⋂

γ∈Γ

Eγ .

Note that if the cycles of Γ were not disjoint, then EΓ would be empty.
Given Γ, with #Γ = i, we are interested in the number of pairs in E that support the

cycles of Γ, and that do not have any t-cycle in the complement Ω \ Γ. The parameters of
the involutions acting on Ω \ Γ are determined by the type of t-cycles being considered (odd
period symmetric, even period symmetric on FixG, etc.). Accordingly, we’ll consider the
following sets of pairs of involutions

(36)

E(g − i, h − i,N − it) symmetric, odd period

E(g − 2i, h,N − it) symmetric, even period, on FixG

E(g, h − 2i,N − it) symmetric, even period, on FixH

whose cardinality is given by lemma 2. Whenever we don’t require specialization, we’ll denote
any of the above sets by the common symbol Ei. The pairs of involutions in Ei act on the
space Ωi with N − it elements.

Let Ēi be the set of elements of Ei that have no t-cycles at all. By the inclusion-exclusion
principle, we find

#Ēi = #



Ei \
⋃

γ∈Ω

Eγ



 =
∑

Γ

(−1)#Γ#EΓ

=
∑

n≥0

(−1)n
∑

#Γ=n

#EΓ.(37)

The number of non-zero summands is clearly finite.
To compute the inner sum for fixed t and i, we first choose n distinct cycles, and this can

be done in (N − it)nt/n! ways. Then we let the involutions act freely on the remaining space,
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which gives #Ei+n possibilities. Thus

∑

#Γ=n

#EΓ =
(N − it)nt

n!
#Ei+n.

Considering the equations (34) and (37), we obtain

(38) µ(t, i) =
N it

i!

#Ēi

#E0
=

N it

i!

M
∑

n=0

(−1)n
(N − it)nt

n!

#Ei+n

#E0

where M = ⌊N/t − i⌋.
We specialize formula (38) to the case of odd period t, using the notation µ(o). For this

purpose, we consider the first expression E in (36), to obtain

µ(o)(i, t) =
N it

i!

M
∑

n=0

(−1)n
(N − it)nt

n!

#E(g − (i + n), h − (i + n),N − (i + n)t)

#E(g, h,N)
.

Inserting the values of #E from lemma 2, we obtain, after some manipulation

(39) µ(o)(t, i) =
1

i!

M
∑

n=0

(−1)n

n!
A(o)(i, n)B(o)(i, n)

where

A(o)(i, n) =
gi+n hi+n

(N − (i + n)(t − 1))i+n
(40)

B(o)(i, n) =















1 if t = 1
(i+n)(t−1)/2−1

∏

j=0

(

1 − g − 1

N − (2j + 1)

)(

1 − h

N − 2j

)

if t ≥ 1.
(41)

With a similar argument we derive the probability µ(e) for even period

(42) µ(e)(t, i) =
1

i!

M
∑

n=0

(−1)n

n!
A(e)(i, n)B(e)(i, n)

where

A(e)(i, n) =
1

2

g2(i+n) + h2(i+n)

(N − (i + n)(t − 1))i+n
(43)

B(e)(i, n) =

(i+n)(t−2)/2−1
∏

j=0

(

1 − g − 1

N − (2j + 1)

)(

1 − h

N − 2j

)

(44)

×
(i+n)t/2−1

∏

j=(i+n)(t−2)/2

(

1 − h

N − j

)

.

As in the analysis of section 2, this expression takes into account cycles on both FixG
and FixH, while the factor of 2 compensates for the double-counting that results from the
presence of two points on each symmetry line.
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We now consider the asymptotic behaviour of µ(t, i), for fixed i. Let y be given by (7),
which we rewrite as

(45) y = x − ln(f) x(t) =
(t − 1)(g + h)

2N
.

For the purpose of scaling, the period t will be allowed to vary with N .
Let us consider the expression

(46) Π(a, g, h) =

(

1 − g

N − a

)J/2 (

1 − h

N − a

)J/2

J = (i + n)(t − 1) 0 ≤ a < N,

which, for a = o(N), provides the dominant contribution to the products B(i, n), in both
cases. A straightforward calculation gives

Π(a, g, h) = e−(i+n)x
[

1 + O
(nxa

N

)

+ O
(nxg

N

)]

.(47)

In view of the bounds

Π(J, g, h) ≤ B(i, n) ≤ Π(0, g − 1, h)

we compute

Π(0, g − 1, h) = e−(i+n)x
[

1 + O
(nxg

N

)]

Π(J, g, h) = e−(i+n)x

[

1 + O

(

n2x2

g

)

+ O
(nxg

N

)

]

.

We obtain
∣

∣B(i, n) − e−(i+n)x
∣

∣ ≤
∣

∣Π(0, g − 1, h) − Π(J, g, h)
∣

∣

and hence

(48) B(i, n) = e−(i+n)x

[

1 + O
(nxg

N

)

+ O

(

n2x2

g

)]

.

This estimate is valid for both odd and even period.
Next we consider the products A(i, n) in (40) and (43). Recalling the definition of f(N)

given in equation (6), and the fact that h = O(g), we have the following asymptotic behaviour

A(0, 0) = 1 A(i, n) = f(N)i+n

[

1 + O

(

xn2

g

)]

, i + n > 0(49)

We must consider two cases.

Case I: f(N) 6→ 0. From (48) and (49), we obtain, for both even and odd period

µ(t, i) =
1

i!

∑

n≥0

(−1)n

n!
e−(i+n)y

[

1 + O

(

n2x

g

)][

1 + O
(nxg

N

)

+ O

(

n2x2

g

)]

=
(e−y)i

i!

∑

n≥0

(−1)ne−ny

n!
+

(e−y)i

i!

∑

n≥0

(−1)n

n!

[

O

(

n2x

g

)

+ O
(nxg

N

)

]

=
(e−y)i

i!

[

e−(e−y) + O

(

x

g

)

+ O
(xg

N

)

]

(50)
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where we have used the identities
∑

n≥0

(−1)nn2

n!
= 0 = O(1)

∑

n≥0

(−1)nn

n!
= −1

e
= O(1).

Now we adjust t so that y is constant. This gives x = O(ln(f)), and for both odd and even
period the error terms in (50) vanish. We have convergence to a Poisson distribution

(51) µ(t, i) ∼ e−ααi

i!
α = e−y.

Note that for the above result to hold, we have only required that f(N) 6→ 0, not the existence
of a limit for f(N).

If f(N) tends to a non-zero finite limit c, there is no logarithmic term in the function y(N)
—cf. (45)— and it is possible to consider the probability µ(t, i) without scaling the period t.
For fixed t, we have x = O(g/N) → 0 and y → − ln(c), and equation (50) gives

µ(t, i) ∼ e−c ci

i!
,

independent of t.

Case II: f(N) → 0. From (49) we have A(i, n) ∼ δi+n (Kronecker’s delta), and hence

µ(t, i) ∼ δi.

The proof of theorem B is complete.

We remark that theorem A can actually be derived from theorem B since the distribution
R(x) follows from first principles as

(52) R(x) = lim
N→∞

RN (x) = lim
N→∞

⌊xz⌋
∑

t=1

t

N

⌊N/t⌋
∑

i=1

i µ(t, i),

equivalently 〈Pt〉 follows from

(53) 〈Pt〉 =
t

N

⌊N/t⌋
∑

i=1

i µ(t, i).

Note that the variable x in (45) is, asymptotically, the variable x in R(x). Taking the result
(51) gives

∞
∑

i=1

i µ(t, i) = αe−α
∞
∑

i=1

α(i−1)

(i − 1)!
= α = e−y

Since e−y = f e−x from (45), we have

(54) 〈Pt〉 ∼
t

N
f e−x.

If t = 2k − 1 is odd, we substitute for f from (6) and x from (45) to see

(55) 〈P2k−1〉 ∼
gh(2k − 1)

N2
e−(k−1)κ.

Comparing this to (25) and noting there that λk−1
± ∼ λk−1 = e(k−1) ln(λ) ∼ e−(k−1)κ shows

that we will recover the result of theorem 4. A similar exercise on (54) for t = 2k using the
appropriate f from (6) yields the result of theorem 6 and hence the distribution R(x) upon
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summation of odd and even contributions. We have chosen to give the independent proof of
Theorem A in section 2 as it is simple and direct and bypasses the calculation of µ(t, i).

The applicability of Theorem B to algebraic maps over finite fields should be considered
with care. For fixed t, the maximum number of t-cycles for an algebraic map is plainly finite,
because the points in a cycle are solutions of a set of polynomial equations; therefore, in the
large field limit, one cannot possibly expect convergence to (8). Under what circumstances is
then theorem B a model for such maps?

To articulate this question, let us consider a specific example, namely the Hénon map (2),
with a = 1. The set FixG is the line y = x, and so over the field Fp, this map has parameters
g = h = p, hence α = c = 1 in theorem B. Let us consider symmetric cycles, which, due to
theorem A, are expected to dominate the dynamics. When the fixed sets are one-dimensional,
the study of symmetric orbits is greatly simplified, because the points in these orbits are roots
of polynomial equations in one indeterminate (as opposed to being points on varieties). Now,
any symmetric odd cycle has a point (x, x) on FixG, and the values of x for the period t = 5
are found to be the roots of the irreducible polynomial

Φ5(x) = x6 − 2x5 + 5x4 − 6x3 + 8x2 − 4x + 3.

Thus the number of symmetric 5-cycles over the field Fp is equal to the number of linear
factors in the factorization of Φ5 modulo p. In particular, the maximum number of 5-cycles
is equal to 6, the degree of Φ5.

In general, polynomial factorization over a finite field is a highly irregular process, subject
only to a slight deterministic constraint —Stickelberger’s theorem— which determines the
parity of the number of factors [2, section 4.8]. Significantly, this process is ruled by a prob-
abilistic law —Cebotarev’s density theorem— which determines the probability associated
with each factorization type (number and degree of the factors) in terms of properties of the
Galois group of the polynomial [15, p. 129]. Specifically, for each factorization with distinct
roots, the degree of the factors defines an additive partition of the degree of the polynomial.
Each partition in turn identifies uniquely a conjugacy class of the Galois group, with the
terms in the partition corresponding to cycle lengths in the cycle decompositions of the per-
mutations in the class. The probability of a factorization type is then given by the relative
size of the corresponding class in the Galois group. If the Galois group of Φ is the symmetric
group, the largest possible one, then every factorization type does actually occur, and with
positive density among all primes.

It can be verified that the Galois group of Φ5 is in fact S6, the set of all permutations
of deg(Φ5) = 6 objects [3]. There are therefore 11 possible types of factorizations of Φ5,
corresponding to the 11 additive partitions of the integer 6. We factor Φ5(x) modulo a few
consecutive primes

Φ5(x) ≡











(x + 508) (x + 917) (x + 1165) (x + 1486) (x + 3168) (x + 5880) (mod 6563)

x6 + 6567x5 + 5x4 + 6563x3 + 8x2 + 6565x + 3 (mod 6569)

(x + 1265) (x + 3889)
(

x4 + 1415x3 + 2999x2 + 4200x + 2683
)

(mod 6571).

These factorizations correspond to the partitions 1 + 1 + 1 + 1 + 1 + 1 = 6 = 1 + 1 + 4,
respectively. We see that, over the field Fp, the Hénon map has six symmetric 5-cycles for
p = 6563 (the smallest prime for which this happens), no 5-cycles at all for p = 6569, and
two 5-cycles for p = 6571.

The degree of the polynomials Φt grows exponentially with t, and it is reasonable to expect
that, typically, they will be irreducible, with large Galois groups. For the symmetric group,
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the Cebotarev’s probability ν(t, i) of occurrence of i symmetric cycles of period t is just the
probability of having exactly i fixed points in the appropriate symmetric group, namely

(56) ν(t, i) =
1

i!

d−i
∑

j=0

(−1)j
1

j!
d = deg Φt(x).

In the large t limit, ν(t, i) converges to e−1/i!, independent of t. This agrees with the predic-
tion of the random involution model.

It is instructive to compare the data (56) from Cebotarev’s theorem with the prediction of
theorem B, for the period t = 5.

i Cebotarev thm thm B

0 53/144 = 0.3681 . . . 0.3679. . .

1 11/30 = 0.3667 . . . 0.3679. . .

2 3/16 = 0.1875 . . . 0.1839. . .

3 1/18 = 0.0555 . . . 0.0613. . .

4 1/48 = 0.0208 . . . 0.0153. . .

5 0 0.0031. . .

6 1/720 = 0.0014 . . . 0.0005. . .

We see that, even for such a low period, for i < 3 the agreement is already reasonable.
Thus, in the two-dimensional case, some statements on the probability of multiple occur-

rences of symmetric t-cycles translate into statements on the maximality of the Galois groups
of Φt. Even though this formulation would allow one to re-cast some dynamical questions in
algebraic terms, we note that problems related to Galois groups of iterated polynomials are
often quite difficult.

4. Concluding remarks

When the reduction over a finite field of a reversible algebraic map with a single family of
reversing symmetries is a permutation, numerical experiments suggest the period distribution
function is given by the period distribution function R(x) of (4). In this paper, we have shown
that R(x) corresponds to the expected period distribution function in a probability space of
pairs of involutions characterized by the cardinalities of their fixed sets. We find that the
same probability space furnishes a Poisson law for the probability of cycles with the same
period, also in agreement with numerics.

We conclude with some remarks:

(1) To prove theorem A, only mild regularity conditions —the existence of the limits (5) —
were imposed on the behaviour of the sequences g(N), h(N), specifying the cardinalities of
the fixed sets of the two involutions, as the size N = qn of the phase space increases (with n
the dimensionality of the map). Similarly, theorem B involves checking the behaviour of the
sequence f(N) in (6). We point out that when a reversible map of a finite set is obtained by
reducing an algebraic mapping to a finite field, the behaviour of such sequences is strongly
constrained, resulting in algebraic growth.

A simple but significant case comprises maps for which the fixed set FixG is an affine
subspace of some linear space. An example is given by two-dimensional reversible polynomial
automorphisms over some field K, where the existence of a normal form for the two involutions



COMBINATORIAL MODEL FOR REVERSIBLE MAPS 17

ensures that their fixed set is a single point or a line [1]. Localization to the finite field Fq

gives a phase space with N = q2 points, and since a line in the affine plane F2
q has q points,

we have an algebraic growth: g(N) + h(N) = 2q = 2
√

N . In dimension d, each of FixG and
FixH can have integer dimension ranging from 0 to d− 1, and if these sets are affine spaces,
we obtain the sequence g(N) + h(N) = N r + N s, with r, s ∈ Q, 0 ≤ r, s < 1. The conditions
(5) are then met as long as one of r or s is nonzero, i.e. as long as one of FixG and FixH is
at least one-dimensional. Furthermore, in this situation, we see from (6) that f(N) = N r+s−1

or f(N) = (N2r−1 + N2s−1)/2. So either f = 1 (e.g., when r = s = 1/2 ⇔ g = h =
√

N ) or
f → ∞ algebraically or f → 0 algebraically.

More generally, the sets FixG and FixH are algebraic varieties over Fq determined by
n polynomial equations, and we are interested in determining the number of points on these
varieties. The number M of points on an r-dimensional irreducible algebraic variety in the
n-dimensional projective space of degree d over the field Fq satisfies the Hasse-Weil bound
[12]

(57) |M − qr| ≤ (d − 1)(d − 2)qr−1/2 + Cqr−1

where C = C(n, r, d). For r = 1 we obtain a square root bound, and we can also replace
(d− 1)(d− 2) by the genus of the curve. The result (57) ensures that, in the large field limit,
there is algebraic growth of the cardinality of fixed sets. So the discussion of the previous
paragraph applies concerning the validity of the asymptotic conditions (5) and the behaviour
of f(N).

(2) Experiments show that algebraic maps without time-reversal symmetry behave quite
differently from reversible ones, when represented on a finite field [20]. In the absence of
reversibility, the cycle distribution is found to be that of a random permutation, given by the
identity function on the unit interval. This distribution, obtained via the scaling z(N) = N ,
has led to a general conjecture [20, conjecture 2].

(3) When a general rational reversible map is reduced over finite fields, we expect that points
where the denominators vanish (singularities) will occur. Restricted to its periodic points,
the reduced map is still a permutation. Numerically, we find the distribution of periods is still
governed by R(x), consistent with Theorem A [9, 22]. But nonperiodic orbits will also appear
in the reduction of such a map. We are presently investigating the extension of the random
involution model to explain various aspects of the dynamics of the reduction to finite fields
of general rational reversible maps [22]. We are also extending our numerical experiments to
cover the asymptotic regime Fq, q = pk, k → ∞.
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