NONLINEAR ROTATIONS ON A LATTICE
FAIRUZ ALWANI AND FRANCO VIVALDI

ABSTRACT. We consider a prototypical two-parameter family of invertible maps
of Z?, representing rotations with decreasing rotation number. These maps de-
scribe the dynamics inside the island chains of a piecewise affine discrete twist
map of the torus, in the limit of fine discretisation. We prove that there is a set
of lattice points of full natural density which, depending of the parameter values,
either are all periodic or all escape to infinity. The proof is based on the analysis
of an interval-exchange map over the integers, with infinitely many intervals.
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1. INTRODUCTION

Regular motions in two-dimensional symplectic maps are rotations on smooth
invariant curves. If the space is discrete (a lattice, typically), then these curves do
not exist, intriguing new phenomena appear, and the stability problem —the central
problem of Hamiltonian mechanics— must be reconsidered from scratch.

Discrete-space versions of symplectic maps first appeared in the study of numer-
ical orbits [22, 11, 27, 9, 28, 19], to mimic quantum effects in classical systems [6],
and to improve the efficiency of delicate computations [12]. The arithmetical char-
acterisation of chaotic orbits provided a new direction of research [20, 13, 7, 18],
and so did the study of the dynamics of round-off errors [15, 16, 17, 4, 31, 14, 23,
24]. Discrete symplectic maps occur in the study of outer billiards of polygons [26],
and in shift-radix systems in arithmetic [1, 2];

In spite of a protracted research effort, our knowledge of these systems remains
fragmented; in particular, the stability problem has proved stubbornly difficult.
Rigorous results are rare, and the many and varied mechanisms responsible for
(in)stability do not yet fit into a coherent picture, let alone a mathematical theory.

If an area-preserving map preserves a lattice, then the existence of bounding in-
variant sets for the map guarantees the boundedness of lattice orbits. Examples
include the invariant polygons of the saw-tooth map [8], and the invariant neck-
laces in outer billiards of (quasi)-rational polygons [30]. But bounding invariant
sets in an embedding space of a lattice are rarely available, and a different approach
is needed. In the case of rational rotations on lattices (which necessarily involve
some rounding procedure), all available proofs of stability rely on renormalization,
which provides knowledge of long-time asymptotics [15, 14, 1, 2]. Renormaliza-

tion was also key to the proof of the existence of escape orbits of outer billiards of
1
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FIGURE 1. An orbit of the map (1), with & = 19 and B = 7. In spite
of large fluctuations in amplitude, the orbit closes up after o revolutions
around the origin. Nearby orbits are intertwined, and hence their bounded-
ness cannot be inferred from topological considerations.

kites over quadratic fields [25]. However, renormalizability too is seldom available
(for rational rotations on a lattice it has been found only for finitely many quadratic
irrational parameter values). Thus no proof of stability is known for invertible irra-
tional rotations on lattices, even though the orbits are believed to be periodic. Here
the perturbation induced by round-off generates diffusive transport, yet all orbits
seemingly return to their initial point via a mechanism that is probabilistic at heart
[4, 31]. The observed stability of the rotational orbits of certain linked strip maps
on lattices is even more elusive [24].

In this paper we illustrate a novel mechanism for the (in)stability of rotational
orbits, as it appears in the following two-parameter family of invertible nonlinear
maps .Z of the two-dimensional lattice Z>

Vi+1 yr — sign(x;) . )1 ifx=>0
1 vt = xtayat+p e = {—1 if x <0,
where a and 3 are integers, and 0 < B < o. (We remark that the modified equation
Vi1 = yr — ysign(x;), ¥ € N would not add generality, as the parameter y can be
absorbed by the other parameters by scaling co-ordinates.) As is often the case
in piecewise affine dynamical systems, the plain form of (1) hides a non-trivial
dynamics (see figure 1); concatenated parabolic arcs result in surrogate rotations
with decreasing rotation number.
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FIGURE 2. Some orbits of the perturbed twist mapping (2), for N = 251.
Asymptotic (N — o0) dynamics inside island chains are described by the
map % given in (1).

The map .# originates from the following perturbed twist map on a discrete torus
[32]:

i+ f(x) (modN)

Yi+1 -
@ G = Nt (mod ) fla) =

Xt+1

—1 otherwise.

{1 0< g<|N/2]

Here N is a large integer —the discretisation parameter— while the perturbation
function f provides a minimalist form of nonlinearity. This map is a ‘pseudo-
elliptic’ variant of the so-called triangle map, which is ‘pseudo-hyperbolic’. (The
puzzling ergodic properties of the latter have so far escaped a rigorous analysis
[5, 10, 18].)

In figure 2 we display some orbits of the map (2), which bears resemblance to the
divided phase space of an area-preserving map. We observe island chains of odd
order, those of even order are missing, and there is no hierarchy of islands about
islands. Plainly, standard Hamiltonian perturbation theory does not apply, so what
does determine the stability of these elliptic orbits?

It can be shown that, for sufficiently large N, the map (1) is the first-return map
to an island of (2) for all points sufficiently close to the island’s centre. If the island
has rotation number m/n, then a = n, and

B =pB(mnN)= Z 1)2m/m) N (mod n).

(See [32] for details.)
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In this paper we solve the stability problem of .%# for a set initial conditions having
full natural density. We show that for these initial conditions either all orbits are
periodic, or all orbits escape to infinity, and we determine, respectively, the period
and the escape rate. In the final analysis, (in)stability will result from ergodicity in
an associated modular arithmetic system.

We will show that the first-return map F to the ray {(x,0) € Z* : x > 0} is an
interval-exchange transformation over infinitely many intervals. Near the origin,
the dynamics is rather intricate (see figure 3), but at large amplitudes, the map F
admits a weak form of translational invariance. The large-amplitude dynamics is
captured by the following conjecture (cf. [32])

Conjecture. Let o = o/ ged(o,2f3). If & is odd, then all orbits of % are periodic,
and for all but finitely many initial conditions, their period under the first-return
map F is equal to &. If & is even, then all orbits escape to infinity.

This conjecture is consistent with the absence of island chains or even order, ob-
served experimentally for the map (2). The main result of this paper is the following
theorem, which establishes a probabilistic version of the above conjecture.

Theorem 1. If & (as defined above) is odd, then the periodic points of .% have full
natural density, and their period under the first-return map F is equal to &. If & is
even, then the set of escape orbits has full density.

The first-return map F will be constructed in section 2, where we derive several
formulae to be used throughout the paper. In section 3 we show that there is no
loss of generality in restricting the parameters to the range a > 28 with o and 8
co-prime (propositions 3-5). In section 4 we show that F is an interval-exchange
transformation over infinitely many intervals; we compute the IET’s metric data,
and establish that the combinatorial data are (essentially) parameter-independent
(proposition 6).

In section 5 we consider the natural symbolic dynamics of the IET, together with
two coarser codes, to factor out translations in the code, and to anchor the code to
the minimum point of an orbit. Asymptotically, the cylinder sets of the symbolic
dynamics have a regular structure —they are arranged into arithmetic progressions.

In section 6 we derive an auxiliary interval-exchange map F' over Z —the re-
duced system— which encodes the asymptotic behaviour of the original IET. The
idea is to take the large-amplitude limit of F, scale it in such a way as to obtain a
spatially periodic integer map, and then extend the latter periodically to Z. The pe-
riodic cells of the reduced system are the blocks, the union of two adjacent intervals
of the IET. We prove that our conjecture holds for the reduced system (theorem 10).

In section 7 we consider the regular points of the Poincaré map F, namely the
points whose symbolic words of length & also belong to the language of the reduced
map F'. We then prove that almost all points are regular (theorem 11), which will
allow us to use the symbolic dynamics of the reduced system for the original system.
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FIGURE 3. Period T (x) of the orbit though x for the interval-exchange
map F associated with (1), with &« = 19 and 8 = 5. (The vertical segments
in the graph of T are merely a guide to the eye.) The behaviour near the
origin is complicated, but for sufficiently large initial points (x > 730) the
period stabilises at o. The depth and width of this comb-like structure
depends sensitively on the arithmetical properties of the parameters.

Theorem 1 is proven is sections 8 and 9. To establish the periodicity of all regular
points of F, we must determine the value of a certain invariant of the reduced system.
This invariant behaves like a variance, and the key lemma 13 establishes its value
by considering the evolution of uniform measures supported on blocks. A similar
technique is used in section 9, to show that, if & is even, then almost all orbits
escape. In this case however, the aforementioned invariant is replaced by a non-
constant function of the coordinates, whose regular variation is determined using
the Sturmian property of rotational codes. The computations of this section are
considerably more laborious than for the periodic case.

The map (1) admits natural generalisations to higher-dimensional lattices. For
instance, one could choose the parameters & and 8 from some ring Z[®] of real al-
gebraic integers, to obtain a dynamical system over Z[®]? (or, more generally, over
the Cartesian product of two Z[w]-modules). These are four-dimensional lattices,
and there is no reason to expect theorem 1 to extend to such systems. In numerical
experiments over quadratic fields, we have observed recurrence and a weak form of
instability replacing periodicity.

2. FIRST-RETURN MAP

In this section we construct the first-return map F to the ray Z = {(x,0) : x > 0},
which is crossed repeatedly by every orbit of .#. Let Z_ = {(x,0) : x < 0}. To
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construct F, we consider the first transit maps F4. from Z. to Z:
F+ZZ+—>Z, F_:7Z_—7.

The idea is to define F = F_ o F_. This is legitimate only if F and F_ map Z, to
Z._, and vice-versa. As we shall see, this is not always the case.

We begin by solving (1) over each domain where sign(x) remains constant. Specif-
ically, let xp and ¢ be such that sign(x;) = sign(xp) for k =0,...,z. We compute:

t(t+1)
2

3)  y=yo—st X; = X0 — as+t(ayo+B) s = sign(x).

Let now u; (s as above) be the smallest positive integer ¢ such that sign(x;) #
construct F, we specialise formula (3) to the initial conditions (xo,yo) = (x, ) and
then match two solutions (3) near x = 0, to obtain

Fi(x) = x+714(x) x>0
“) F+Ex§ = x+§+(x) x<0
where
T (x) = 2Buy(x)— oy (x)?
w(®) = U () +1)
Ui(x) = % (2[3 —o+ \/(ZB — a)2+8ax)
T (x) = 2Bu_(x)+au_(x)*
u(x) = [U-(x)]
) U_(x) = 21a< (2B + ) +1/ (2B +a)? 8ocx>.

As functions over R, the functions 7. are singular, and right continuous at each
singularity, as easily verified.

As x — oo, we have 74 (x) ~ —2x; likewise as x — —oo we have 7_(x) ~ 2x.
Hence, for all sufficiently large x, we have F, (x) < 0 and F_(—x) > 0.

Next we investigate what happens for small x. Let (x,,) and (y,) be the sequences
of singularities of F and F_, respectively. We compute

xng(a(m+l)—2ﬁ) m=0,1,2,...
(6)
Y= (@ 1)+2)  n=0,1,2,..

where the case n = 0 is introduced for convenience.
We begin with F.. Letting

Zm=F4 (xm) =Xm+ T4 (xm)
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we find
= 5 (am+1)=2B) 4+ (m+ 1)(2 —a(m+1))
%) = "2 (0p—alm+ 1)),

Note that x,,,y, and z,, are integers, and that
8) X1 —Xm =Zm —Zm—1 = 0(m+1)— B m>1.

Now, since 7 is right-continuous, for all m > 0 we have

9) y=Fi(x) =x—xn+2nm X <X < Xt
and we find
m+1
am=sup Fi(x)=xpp1—Xm+tzm= T(ZB —om).
X SX<X4-1

Thus a,, < 0 for m > 1, whereas a,, > 0 for m =0, and, if @ < 23, also form = 1.
We repeat the analysis for F_. We define

(10) wn:F_(yn):g(a(n—1)+2B) n>l.
Now, since 7_ is right-continuous, we have

(11) w=F_(y)=y—yatwn Yn <Y < Yn—1
so that

bpy= min F_(y) =w,.
In<Y<yVn-1

Thus b,, > 0 for all n.
We now extend the domain of F_ to include all positive values of x for which

U_(x) is real —see (5). We find that
2B+ a)?
(12) —1<U_(x)<0 if OSxSx*:z%

so that in this x-range we have u_(x) = 0 and F_(x) = x. We verify that the image
of F. remains within this range:

_ 2 _ 2
X*_%:M>O x*_m:M}o_
8o 8o

So we have
Fi(x)20 = F_(Fi(x))=Fi(x),

hence F = F_ oF,, and we have established the following result:
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Proposition 2. The first-return map F to Z. is of the form x — x + T(x), where
T(x) = 2B (u-(y) +us (0) + o (v) ~ui (x)  y=Fi(x).

Next we compute the sequences of singularities of F. To this end, we must de-
termine the sequence (F;'(y,)) and then merge it with (x,,). To compute F3' we
solve (9) for x, and then use (6) and (7) to obtain

(13)  F{') =y+m)+D)(amy)+1)=2B) <y <zm1.
Here m is the smallest integer such that z,,, < y. We find

_(2B-3a+/ (2B + )% —8ay
N 20

m(y)

and one verifies that m(y) + 1= [UL(B —y)].
To order the singularities of F we must establish a relationship between the in-
dices m and n, namely find all solutions n = n(m) of the inequalities
Zm < Yn < Zm—1-

In what follows we exclude the special cases § =0 and o = 23 which are dealt with
in proposition 3 in the next section. Let n = m + k. The lower and upper bounds
give, respectively

) ((k—=1)o+2B)(k+2m+2)<0

i) (ka+2B)(k+2m+1)>0.

We obtain
2
i) —2(m+1)<k<1—£

2
ii) k<—-(2m+1) or k>—£.

Since m+ k > 0, the relevant bound in i) is the rightmost one, and we find
0 2

(14) k= o >2p
-1 a<?2B.

Accordingly, we let

Y = Fll(ym) OC>2[3
" F—T—l(ymfl) a<2p

where in both cases we use the same branch of Fj_l, specified in (13). We find:
(15) , _{%(am+3(a—2[3))+a—2ﬁ a>2pB

m =

X F(am+5a—6B)+a—f o <2B.
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Let (8,,), m > 0 be the sequence of singularities of F, in ascending order. From
(14) we have & = 0 and

Xm o >2p X o a>2p
16 - = {7m 12,
(16) o {xfn o <2pB 021 {xm o <2pB

This leads to the sequences of singularities

(X0, X0, X1,X],%2,%5,...)  a>2P
(X0, X1,X),%2,%5,%3,...)  a<2B.

3. PARAMETERS

In this section we show that there is no loss of generality in restricting the param-
eters of the map .7 to the range @ > 23 with & and B co-prime. This is the content
of the following three propositions. To make the parameter-dependence of .% and
F explicit, we shall use the notation % g and F,

First, we dispose of the special parameter values ﬁ 0 and 23 = a, at which the
singularities of F cancel out and the dynamics is trivial.

Proposition 3. If B =0 or 23 = «, then F is the identity.

PROOF. Let B = 0. From (6), (7), and (10) we verify that z,, = y,;,+1 and that
W41 = Xp. We find

Xm = W1 =F_(Ymi1) =F—(zm) = F-(F4(xm)) = Fxm).
Likewise, if 28 = a, then z,, = y,, and w;, = x;;;, and we have
Xm = Wm = F_(ym) =F_(zm) = F-(F1(xm)) = F(xn).

In both cases the sequences (x),) and (x,,) map into one another, and x, is a fixed
point of F for all m.

Our claim now follows from the fact that the function 7 is piecewise-constant and
right-continuous at all its singularities. [].

Next we reduce the size of parameter space by establishing a symmetry.

Proposition 4. For all &, 3 we have Fy o g = F& B
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PROOF. First we show that the singularities of the two maps coincide. The singu-

larities of F_ lﬁ are Fy, g(x,,) and Fy, g(x,,). We shall use equations (6-11). For all

o, B we have
Fop(t(@.B) = F-(m) =wn =7 ((m—1)+2p)
(17) = xp(a,a—P).

For a > 23 we have

(18) Foop (en(@.B)) = F—(2n) = Zn =Yt 1 + Wi
= Z(a(m+1)+6B))+4p
= Xi(aa—p).
For a¢ < 23 we have
(19) Fopm(a,B)) = F(zn) =2m—Ym+wn
= 7 (am—3(a—2B))— (a—2p)

= x,(0,a—p).

So Fyp and F, ! ap have the same singularities. This result, together with the
analogous calculatlons with exchanged parameters, show that the value of F, g and

1
Foc oa— ﬁ
and F~! establishes the result. [J

at those singularities is the same. The right continuity of the functions F

Finally, we show that it suffices to consider the case ged(o, ) = 1. Let d be a
positive integer, and let us consider the map .7 4, with ged(a, B) = 1 Then, for
any r in the range 0 < r < d, the set

(20) Lg,=(r4+dZ)xZ
1s invariant under L%ia,dﬁ [since in this case x;] = x; (mod d), from (1)].

Proposition 5. Let d € N. Then, for any r in the range r € {0,...,d — 1}, the map
Fq,p 1s conjugate to the restriction of F 4 45 to Ly ;.

PROOF. The map
W, 22 = (r+dZ) x 7 (x,y) — (r+dx,y)
is clearly a bijection. We must show that

Vo Fgp = %za,dﬁhddﬁ
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We compute
(WroFap)x,y) = Wr(x+ay—asign(x)+f,y—sign(x))
1) = (r+d(x+ay—asign(x)+ ),y —sign(x))
= (r+dx+doy—dasign(x)+dp),y— sign(x)).

Now, for any x € Z we have sign(x) = sign(dx + r). This is clearly true if x > 0,
since r > 0. If x < 0, then

dx+r<—d+r<—1
and hence dx + r has the same sign as x. Using this identity in (21), we obtain:

(WroFqp)x,y) = [(r+dx)+day—dasign(r+dx)+df,y—sign(r+dx))
= (cg[da.,dﬁ}LdﬁrO‘I/r) (X,y),

as desired. [

4. THE INTERVAL-EXCHANGE TRANSFORMATION

In this section we characterise the first-return map F defined in section 2 as an
interval-exchange transformation, by computing its metric and combinatorial data.
There are only two distinct permutations of the intervals, corresponding to the two
parameter ranges o > 23 and o < 23, one permutation being the inverse of the
other (proposition 6).

We define the sequence of intervals

(22) Ap = [8n_1,60) m=1.2,...

where §,, is defined in (16). These intervals form a partition of Z . The restriction
of F to each interval is a translation, and hence F —being invertible— is an interval-
exchange transformation.

For o > 23, and m > 1 the corresponding translations are given by

Tom = F(x;n_l) _x:n_la Tom—1 = F(xm—l) —Xm—1

while the interval lengths are
| A | = Xim = X1, | Aom—1] = X3y = Xin—1-
Using (17) we obtain
om = (2B—a)2m—1)

Tm-1 = 4Bm
(23) ‘A2m‘ _ ﬁ(2m—l) O£>2[3,m21
[Aom—1| = (ot—=2B)m.

For o < 23, we have 1) = F(0), |A;| = x1, and form > 1

Tom = F(Xm) — X, Tomt1 = F(x5,) — X,
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and
| Ag| = X, — X, Ao 1] = X1 — ),
giving
T = 2B—«
Tom = (2m+1)2B8 — )
Tm+1 = 4m([3—a)
24 oa<2p,m=1
|Aom| = (2m+1)(0 — )
[Aomi1] = m(2B —a).

Let o be the permutation of N induced by F, whereby o(j) = i means that the
jth interval ends up in position i.

Proposition 6. The permutation ¢ induced by the IET (23) and (24) is given by:

3,1,5,2,7,4,9,6,... o>2
5(1.23,. )= (3:1527.49.6..)  a>2p
(2,4,1,6,3,8,5,10...) o <2p

thatis, forn=1,2,...

25) c2)=1, o(2n+2)=2n, c2n—1)=2n+1 «a>2P
oc(1)=2, o(2n)=2n+2, c2n+1)=2n—-1 o <2p.

PROOF. From proposition 4 it suffices to consider the case o > 2f3. Note that the

inverse permutation 6! for @ > 28 is equal to the direct permutation o for o < 23,

and vice-versa, in agreement with proposition 4. Defining the sets of indices

(26) Li=0, L={c'k):k<i} i>l,

and considering that L; 1 \ L; = {c~' (i)}, we verify that (25) is equivalent to

L2n+1 - {17 .. ,Z(I’l—f— 1)}\{21’1— 1,2n+ 1}
Ly, = {1,....2n}\{2n—1}

From (22), we have, for all i, j:

(28) o(j)=i << F(§_1)=Y Al
keL;

27) n>l.

We shall establish the theorem via the rightmost identity, using formulae (16) and
(23). For j =2, we find

F(81) =F(xp) =x0+ 12 =0= ) |A
kel

(the sum is empty) which establishes that (2) = 1.
Next we let j = 2n — 1, and we shall use the identity

Xpt1 —Xn—1 =0(2n+1)—2p n>l,
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derived from (6). We compute:
F(52n72) = F(xnfl) =Xp—1+ Ton—1
= Xpp1—a(2n+1)+2B+4Pn
— ur1 — (@ —2B)(2n+1)
O2(nt1) — [Aon—1] — [Agnt1]

2(n+1)

= Y A=Az 1| Az
k=1

= Y |l

k6L2n+1

This shows that 6(2n — 1) = 2n+ 1, as desired.
Similarly, for j = 2n we need the following identity

Xp—X, =2 —a)(n+1) n=0
derived from (6) and (15). Proceeding as above, we obtain:

F(62n+1) = F(x;,) = x; + Ton+2
= x—(x=2B)(n+1)—(x—2B)(2n+1)
= Su—(a—2B)n

2n

= ) A=Az
k=1

= ) A
keLZn

This shows that 6(2n 4 2) = 2n, and the proof is complete. [

5. SYMBOLIC DYNAMICS

In accordance with the results of section 3, in the rest of this paper we shall
assume that o and B are co-prime and that o > 2.

We introduce several related symbolic dynamics for the interval-exchange trans-
formation F. Every A-interval has an index ¢, given by

(29) c(x)=n — X EA,.

Next we glue adjacent A-intervals pairwise, to obtain the blocks Z,,:
(30) En =Ny 1 UAy, n=>1.

Every block has a block index b, given by

31) b(x)=n <  xEZ,
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Thus

32 bio) = |

C(x)2+ 1J .

The code C(x) = (cp,c1,¢2,...) of apoint x € Z is the sequence of natural num-
bers that label the intervals visited by the orbit of x, that is, ¢, = ¢(F'(x)), with ¢
given by (29). The block code B(x) = (by,by,...) is defined similarly, using the
function (31).

We shall also consider translated codes, using the notation

(33) C(x)+k:=(co+k,c1+k,cr+k,...).
The minimum point 1 (x) is the smallest element of the orbit through x, namely
(34) N(x) :=min{F (x) : t € Z}.

The transit time ty (x) is defined to be the integer  such that F' (x) = 1 (x), if x is not
periodic, and the smallest non-negative such integer if x is periodic. In the former
case, ty may be negative.

We introduce two auxiliary codes, namely

C°(x) = C(x)—c(x)
C'(x) = C(n(x)) =C(Fn(x)),

called, respectively, the translated code and the normalised code of the point x.
Each code defines an equivalence relation on Z., and we shall denote the equiva-
lence class of x for each of the three C-codes by [x], [x]°, and [x]*, respectively.

For any x, the set [x] is a segment (by which we mean a finite set of consecutive
integers), being the intersection of pre-images of segments A, under F. On each set
[x], the motion is rigid.

(35)

Lemma 7. The code C(x) is periodic if and only if the orbit through x is periodic,
in which case the period of the code and that of the orbit coincide.

PROOF. If the code is not periodic, then the orbit cannot be periodic. Assume now
that C(x) is periodic with period 7. Since [x] is finite, the orbit through x must be
periodic with period nT, for some n > 1. Now, for any k, we have x — FT (x) =
F*T (x) — F&+DT (), this difference being determined solely by the periodic part of
the code. Thus 0 = x — F"T (x) = n(x — F’ (x)) and hence n = 1 and x = F' (x). [

Given two codes C and C’, we write C < C’ to mean that either ¢y < c6 or there is
i € N such that ¢; < ¢} and ¢ = ¢} for k =0,...,i— 1. The set of all codes (of any
of the above types) is therefore totally ordered. Using the notation (33), we have,
for any k,

(36) Cx)<C(X) <= Ckx)+k<CE)+k.
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We now let
(37) C(x) = C(F'(x)) teZ

be the codes for all possible initial conditions along the orbit of x. Then we define
the minimum code C(x) as

(38) C(x) =min{C(x) : t € Z}
where the minimum is computed with respect to the above ordering. Such a min-

imum obviously exists. The following result connects the minimum point to the
minimum code.

Proposition 8. For all x € Z, we have
C(x) = Gy (%)-
To prove this result, we need a lemma.

Lemma 9. For all x,x' € Z,., if C(x) < C(x') thenx < x’. Conversely, if x < x/, then
C(x) <C(X).

PROOF. Let C(x) < C(x'). If ¢o < cf,, we have finished. Otherwise, let i be as in the
definition of ordering of sequences. Since ¢; < c§ we have that A, lies on the left of
A, and hence F'(x) < F'(x'). Now

i—1 i—1
F'(x) =x+ Z T, < F(X)=x'+ Z Tl
k=0 k=0

where the Ts are the translations. By assumption, the corresponding terms under
the summation symbol are the same, and hence their sum is the same, giving x < x’.

Conversely, assume that x < x’. If C(x) # C(x’), then there is a smallest index i
for which ¢; # ¢}. If i = 0, then ¢(x) < ¢(x), and we have finished. Otherwise, the
argument used above gives that F'(x) < F/(x'), and since c(F/(x)) # c(F!(x')), then
¢; < ¢}, necessarily, whence C(x) < C(x'), as desired. [J

PROOF OF PROPOSITION 8. Let C;(x) be as in (37). We will show that G, (x) <
Ci(x), for allr € Z. Let ¢~ be the smallest code element:

¢ (x) =min{¢(x) : r € Z},
and let

Tx)={t€Z:c(x)=c (x)}.

Clearly, ty € T(x). If t ¢ T (x), then G, (x) < Ci(x), since the former code has a
smaller first element. So we only need to show that G, (x) < C;(x) for t € T'(x) \
{tn}. For this purpose it suffices to establish that G, (x) # C;(x). Indeed, if G, (x)
were greater than C;(x), then lemma 9 would give F' (x) > F'(x), contrary to the

definition of minimum point.
We have two cases.
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Case I: T(x) is finite. Then the orbit through x is not periodic. Take any ¢ €
T(x) \ {tn}. Then the number of entries ¢~ appearing in the codes C, (x) and C;(x)
is different, and hence C;, (x) # C;(x), as desired.

Case II: T'(x) is infinite. Then the orbit is periodic, since F is invertible and the
orbit visits infinitely many times the finite set A.-. Let ¢ be the period of the orbit
(hence of the code, from lemma 7), and choose ¢ in the range t;; <t <ty +¢ . Then
the quantity 0 = x; — Xp,+¢ 18 positive, because x;, 1, is the minimum point and x; is
not. Assume now that C;, (x) = G;(x). Then x;, — x;, 1. is also equal to 6, since it
is determined by the same code. But this would imply that x;, ¢, is smaller than
the minimum point, a contradiction. Thus G, (x) # C;(x), as desired. The proof is
complete. [J

6. THE REDUCED SYSTEM

If we order the cylinder sets [-]| of the C-code according to the lexicographical
ordering, then from lemma 9, the resulting sequence Xy, X1, ..., has Xo = [0], and
X, +1 lying immediately to the right of X,,. The dynamics of F on Z_ induces a
dynamics on cylinder sets [x] — [F(x)], which we shall represent as dynamics on
integers. There are two problems to be dealt with. First, there are anomalies near
the origin; these are circumvented by looking at large amplitudes. Second, there are
anomalous cylinder sets, whose size does not increase linearly with the block order;
these are dealt with by scaling.

In this section we derive the so-called reduced interval-exchange map F', ob-
tained from F by scaling coordinates in such a way as to obtain a spatially periodic
system, whose period is the block size. The points in the phase space of the re-
duced system represent the so-called regular cylinder sets of the C-code. The latter
correspond to a set of full measure of orbits of F, as we shall see in section 7.

Using formulae (23), the following asymptotic relations for m — oo are estab-
lished at once:

(39) ‘AZm—ly ~ (a—2ﬁ)m |A2m| ~ Zﬁm
m+1 ~ 4Bm Tom ~~ 2(2[3 — Ot)m.
Let Z,, be as in (30). Then
(40) 1Zm| = |Aom—1| U |Aom| = am— B, |Zn| ~ am.

Scaling by m, and taking the limit m — oo, we obtain a periodic interval-exchange
transformation, whose period is the block length ¢, which we then extend to the
whole of Z. For definiteness, we shall place the left end-point of the interval A;
at the origin. (We shall make a different choice in section 7.) This is the reduced
system. For any m € Z, we have:

Ny, | = a-28  |A,| = 2P
41 m—1 2m a>2
1) 4 = 4B 4, = 202B-a) p
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b b

FIGURE 4. The translation surface of the reduced system, constructed
from the infinite region lying between the two polygonal lines, by identi-
fying pairs of parallel sides according to (42). (Two pairs of corresponding
sides are marked explicitly.) The IET is the first-return map to the dotted
line for the vertical flow, the ticks marking the boundary of the blocks. The
points a and b are two of the four infinitely branched singular points on the
surface.

from which we obtain

4 F.Zo7 . z+4p 1fz(m?da)<a—2ﬁ
z—2(ae—2B) otherwise.

The reduction of F' modulo « is a rotation:
(43) F'(z) = z+4p (mod «).

The translation surface of F' is depicted in figure 4.

The B and C-codes for the reduced system are defined in the obvious way. Then
we determine the domains corresponding to transitions between intervals and blocks.
Four distinct parameter ranges need to be considered. In each case, we display a
partition of the blocks consisting of four half-open intervals. We provide the length
of each interval, and two associated transitions:

(44) de(z) = c(F'@)—c(z)  db(z) = b(F(2)) - b(2).

The former is the transition between IET domains, expressed as the change of the
c-code for both odd-order (1) and even order (2) intervals; the latter is the transition
between blocks, expressed as the change of the b-code.
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Case . 0<6B < @

interval length  dc db
0<z<a—6B a—68 1:0 0
(45) a—68<z<oa—4B 28 1:+1 0
oa—4B<z<a-2B 2B 1:42 +1
oa-2f<z< 283 2:-3 —1

Case IL: 4B < ¢ < 6f3

0<z<a—4p a—4B 1:41 0
46) a—4p<z<a—2B 2B 1:42 +1
o—2B<z<2(a—-3B) a—4p 2:-3 -1
2(a—-3f)<z<a 68—a 2:—2 —1

Case II: 38 < o < 4P

0<z<2(x—3P) 20(a—3B) 1:42 +1
o—4B<z<a-2pP 48 — a 1:43 +1
o—-2f<z<2(a—-2B) a—-2p 2:-2 —1
20—2B)<z< 4B — a 2: =1 0

(47)

Case IV: 2B < a < 3p

0<z<a-—-283 o—2p 1: 43 +1
a—-2<z<2(a—2B) a-2B 2:-2 —1
2—2B)<z<3(ax—2B) a—2B 2:-1 0
3(a—2B)<z<a 23—a) 2

(48)

From the above data, we see that the c-code can be recovered from the b-code, as

follows:
_ ) 2b(z) if db(z) = —1
(49) @ = {Zb(Z) —1 otherwise p<a
_J2b(z)—1 if db(z) =+1
@ {2b(z> otherwise 4B > a.

Thus B determines C, while the inverse relation is established by (32).
The next result establishes the dynamics of the reduced system.
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Theorem 10. Let @ = o/ged(o,2f3). If @ is odd, then all orbits of the reduced
system are periodic with period &; in addition, all orbits have the same normalised
code. If a is even, then all orbits escape to +oo. Specifically, if we stipulate that 0
is the left end-point of a block, then

(50)  (F)*4() =z+e(2)a e(z) = {‘H if z=0,1(mod 4)

—1 if z=2,3(mod 4).

PROOF. We consider the transition domains with non-zero value of db. From tables
(45)-(48) we see that for any choice of parameters, the interval with db = +1 and
that with db = —1 have the same length.

If @ is odd, then we distinguish two cases. If & is odd, then there is a single orbit
modulo ¢. Because the transition intervals have equal length, we have

a—1
(51) K(z) =) db(z) =0,
k=0

that is, modular periodicity corresponds to periodicity in Z. If & is even, then there
are two orbits of period @ = /2, and the transition intervals have even length.
Since each orbit has the same number of elements in each interval, equation (51)
holds as well. Furthermore, both orbits have the same code.

If a is even, then « is divisible by 4. The number of elements of the two transition
intervals with non-zero value of db(z) is divisible by 2 but not by 4. Furthermore
such intervals are adjacent, and their combined length is divisible by 4. In the dy-
namics modulo o there are four orbits of period o /4, from which it follows that
the sum x(z) is equal to +1 for two orbits and to —1 for the other two. Inspecting
formulae (45)—(48), we see that for all parameter ranges the left end-point of the
db = +1 region is congruent modulo 4 to the left end-point of the block. Consider-
ing that the length of that region is congruent to 2 modulo 4, if we place the origin at
the left end-point of the first block, then it follows that k(z) = +1if z=0, 1 (mod 4)
and —1 otherwise, which is formula (50). [

7. REGULAR POINTS

We define the a-code of a point x to be the finite sequence consisting of the first
o terms in the code C(x) under F. An a-code of F is said to be regular if it is also
the a-code of some orbit of F'. In this context, we also use the terms regular point
(a point whose ¢-code is regular), regular cylinder set (the cylinder set of a regular
a-code), etc.

Plainly, irregular points must exist, because the phase space of F is bounded be-
low and that of F' is not. Moreover, if @ is even, then the number of irregular points
is necessarily infinite, since there is an infinite number of orbits with a minimum
point. The situation far from the origin is captured by the following conjecture.
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Conjecture. If a is odd, then all but finitely many points are regular. If & is even,
then all but finitely many blocks have the same (positive) number of irregular points.

In this section we establish the following weaker statement.

Theorem 11. Let I' be the set of regular points of the Poincaré map F. Then I' has
full natural density. Moreover, we have the block decomposition

[x]

oa—1
n = U En,k UA,
k=0

where the £, ;s are the regular cylinder sets in the nth block, ordered from left to
right (equivalently, by the code ordering introduced in section 5), A, is the set of
irregular points, and

|Enkl = n ged(a,2B) +0(1), Al = O(1).

PROOF. We fix a sufficiently large integer n. Let the stretched map be the IET
obtained from F’ [see (39)] by multiplying by n all interval lengths and translations.
In what follows, the symbols F', &', A’, 7/ will refer to the stretched system for the
current choice of n, with A, =[5, _,,6,) [cf. (16) and (22)].

The left and middle singularities of the block =, ; are, respectively,

/
62(n+k71) = Xn+k—1 62(n+k)71 = xn—i—k—l :

We align the left end-points of the blocks Z,, and E/, by letting 62/(}1—1) =&(n_1) =
Xp—1. Then the left and middle singularities of the block E;l 4 are, respectively,

Sﬁ(n+k—1) = Xp—1 +knot 5£(n+k)_1 =Xp—1 +kno+n(a—2p).

The mismatch of the corresponding singularities is, respectively,
1
a5ék = 52(n+k—l) - 62/(n+k71) = Ek(ak— o — ZB)

’ 1
I = Suik)—1— Byt = Sk(ok+a—6B),
is independent of n. Hence the quantity

b1 = max{[98, .10}

[k|<a

which represents the maximum distance between singularities over the largest re-
gion that can be spanned with ¢ iterates, is independent of both n and k.
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The difference between the corresponding translations are given by!

ITynik)-1 = Tonik)—1 — Topurn)_1 = 4Bk
OTnik) = Ta(ntk) — Tz(n+k (2B —a)(2k—1).
We choose x € Z),, and we let C'(x) = (cp, ¢}, ..., cl,_) be the o-code of x under F'.

The data (45)—(48) show that the orbit of x under F' will sweep at most o adjacent
blocks, so that k will be in the range [n — o+ 1,n+a — 1].

The maximum distance between the orbit of F' and the orbit of F with the same
code is estimated as f0110w5'

max‘zarx} < maXZ|81/ max(tmax|8r/|)

<o <o =0
< Otmax|<91'/| =: b.
i<o

Since 8*50; is independent of n, so is the constant b;.

Let now b = by + by; then b depends on o and 8 but not on n. Let us choose
n > 2b. Now, the equivalence classes of the stretched system coincide with the a-
cylinder sets. From the argument used in the proof of theorem 10 we deduce that
each class has size nged(or,2f3). It follows that for each class [y]’ C E/ we can
find a point x which lies at distance greater than b from the end-points of [y]’. Now
consider the first o points in the orbit of x under the maps F and F/, respectively.
Because of the way b was defined, no singularity of F or F' will lie between corre-
sponding points of the two orbits. This means that the ¢t-codes of the two maps are
the same. Since the same code is clearly available for the unstretched system, we
have that the point x belongs to some regular cylinder set £, ; C E,, and that such
set has size nged(o,28) + O(1), where O(1) < 2b.

Let " be the union of all regular t-cylinder sets. Keeping in mind that |Z/ | —
|Z,| = B, we have

TNE, > a(n—2b)—
and
[Adl = [2,\T| < 202b.

The density Z(I") of I' is then given by

.@(F)—hm—{xer x<N} = hm—Z‘l"ﬂ

N—oo N n—o0 X,
1 i ( )
> lim — o(n—2b)—P

0 Xn =2p+ 1
1 [an(n+1)

+0(n)| =1,

1 : o
Consider that 7, = T,,.
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where we have used the expression (6) for x;. This is the desired result. [

8. PERIODIC ORBITS

In this section we prove the first statement of theorem 1: if & is odd, then the
periodic points have have full natural density.

Let C be a regular a-code, and let Cy and C; be, respectively, the multi-sets of
even and odd integers in C. From the periodicity of the reduced orbit and (41), we
find:

(52) 0=Y 7.=4B|Ci|+2(2B — a)|Cl,

ceC
and since |Ci|+ |Co| = o (if ¢ is even, we go through the period twice), we have
(53) Cil=a—2B  |Co|=28.

Let us now consider an F-orbit driven by the same code. Using (23) and (53) we
obtain:

Y= Y&o+t) =

ceC ceCy ceCy
= Y @B-a)c—1)+ ) 2B(c+1)
ceCy ceC
= (2B—a) Y c+2B ) c+(a—2B)|Col+2BIC1]
ceCy ceCy
(54) = (2B—a) Y c+2B ) c+4B(a—2p).
ceCy ceCy

An F-orbit with a-code C will be periodic iff the rightmost expression is zero.
We begin to analyse this expression by introducing the following function:

(55) S:7—17 Sx)=(a—2B) Y c—2B ) c

ceCy(x) ceCy(x)

where C = C(x) is the a-code of the reduced system F/, and Cy and C; are the
multi-sets of even and odd elements in C.

Lemma 12. If @ is odd, then the function S is constant.
PROOF. Since @ is odd, every F'-orbit is periodic with period o/ ged(a,2f3), from

theorem 10. Since the ordering of the elements of C = C(x) is immaterial, the value
of § = S(x) is the same for all points of the orbit of x. Now, for any integer k we
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have, using (53):
(@=2B) Y c—2B Y c = S+(a—2B) Y k—2B) k

ceCoy+k ceCi+k ceCy ceCy
= S+k(a—2B)|Co| —2BK|Cy]
= S+k(a—2B)2B -2Bk(a—2B) =
It follows that the value of S is the same if we replace C with the normalised code

C*. Theorem 10 says that there is only one normalised code. Hence, in the periodic
case, S is constant. O

We define the analogue of S for the b-code:
(56) R(x)=(a—2B) ) blc) 2[3219

ceCy(x) ceCy(x)

where the sum is taken over the codes of the first & points of the orbit with initial
condition x. The expressions S and R are related as follows:

S = (a—2B) ) 26—-28 ) (2b—1)

ceCy ceCy
= 2[(@—=2B) Y b—2B) b+B ) 1]
ceCy ceCy ceCy
(57) = 2R+2B(a—2p).

Thus R is constant, from lemma 12.
For j =0, 1, let the set X;(x) be defined by the condition x € X; < ¢(x) € Cj. We
define a second variant of S and R:

(58) Tx)=(a—2B) ) y—28 Y
y€Xp(x) yeX) (x)

again summing over the initial segment of an orbit with initial condition x. To
express T in terms of R, we consider quotient and remainder of the division of y by
a:

y=oa(b(y)—1)+r(y) where 0<rly) <a.

Since r is determined by the dynamics modulo o, over an ¢-segment of orbit, we
have

(¢—=2B) Y 1-2B ) 1=(a—2B)2B—-2B(a—2B)=0

yEXp yeX]

Considering the above identity, and introducing the short-hand notation

(59) u=a -2, w=2p, u+w=auo
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the expression (56) with ab(y) =y+ o — r(y) gives

aR(x) = T(x)+[u ) (@a—r(y)—w ), (@—r(y)]

y€Xo yeX)
o—1 u—1
= T(x)—uZy+wa
y=u y=0
uw
= T(x)——c.
-

So T is constant as well, and, using (57)
(60) T=aR+af(a—2p), whence oS =2T.

The following result is crucial.

Lemma 13. Let T be as in (58). Then, if & is odd, we have T =203 (o —2P3).

PROOF. We consider the uniform probability measure iy on the first block E| =
{0,..., 00 — 1}, and its images 1:

o—1
1) Bl = X B i) = ko((F) (),
k=0

where & is Kronecker’s delta. For j =0, 1, let x; be the characteristic function of
the set {x € Z : ¢(x) (mod 2) = j}. We decompose L, as follows

e (x) = Hg0(x) + pr 1 (x) e j = e () ().

For all ¢, the support of u; consists of a complete set of residues modulo ¢. This is
seen by noting that if two distinct points in the support of u; were congruent modulo
o, then they would belong to different blocks, and —due to spatial periodicity—
the same would hold for their respective initial points, which is not the case. (Alter-
natively, the dynamics modulo « is a translation [see (43)], for which the measure
Mo is invariant.) Since the value of 1, j(x) depends only on the value of x modulo
a, it follows that

6 Lo =Yuo@=2 Y= Yuoi=1-2

x€Z x€Z XEZ xX€Z o

Consider the random variable &(x) = x. We begin to show that the expectation
E, (&) with respect to y, does not depend on 7. Using the identities above, we find
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(all sums are over Z):
E1(8) = leltﬂ Zxﬂz (x))
— Z F(y)woly)+ Z F(y)pea(y
= Z()’ 2u) py,0(y +Z y+2w)pe 1 ()
— Zy(u[,o( + 11 (y ZMZIJzo )+2wY w1 (y)
y y
- Ef@)—zuguwa:m:t(é),

where the change in the range of summation is justified by the invertibility of F'.
Hence

(63) E/(§) =Eo(8) = 2

Now we consider the evolution of the second moment
Er1(8%) ~E(&) = Zx‘,xzur((F’)*l(x)) - Zx:xzur(X)
= Z(F/(x)z —Xz) (Hz,o(x) + M (x))
= 4w Zxﬂz,l (x) —4u quho (x)
+aw Zut 1(x) +4u Zut ofx
(64) = 4(Q:+uw)
where
Or =wE; 1 —uE; o E ;= Zx/.thj(x)
Using (59), we find

O = (0—uw)Byy—ul;o=aE —u(Eo+E;)
(65) = OC]EM — ME[(&) = OC]EM — ME().

Similarly,

(66) Ql WEt 1— (OC W)]Et 0= —(X]El () +W]EO
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Iterating (64) over one period of the orbits of F/, and using (65), we obtain

a—1
0 = Eq(&%)—FEo(&?) = ZO(EHI(&)—E(&Z))
= 4a(uw—qu—|—Oi]Et71),
t=0

which yields
o1 u
E1=z(u—w-—1).
;6 1= 5 (u—w—1)
Repeating the same procedure with (66), we find:
o1
Y Eo==Q@u+w—1).
= 2

Combining the last two expressions and using (59), we obtain
a—1 a—1

(67) (@—2B) Y Eio—2B ) E.i=20B(ax—2p).
=0 =0

The final step is to express 7 in terms of the sum above. We let y,(x) = (F)'(x),
and exploit the fact that T is constant, to find:

ESIE TN N U SR
' = u 2 i X)) —w E,yt 001)
=0 t=0

1 a—1 a-—1 . . a—1 . .
= 2 ) W) —w ¥y )]
x=0 t=0 =0
a—1 [a—1 (x) a—1 [o—1 (x)
x) X0\Y x) X1\
= ”Z(Z)’z() O(at )>_WZ<Zyt() l(ar ))
t=0 \x=0 t=0 \ x=0
oa—1 a—1
= MZEZ7O_WZEt71'
t=0 t=0
Comparison with (67) gives the desired result. L.

We can now complete the proof of the first statement of theorem 1.

COMPLETION OF THE PROOF OF THE FIRST PART OF THEOREM 1. From lemma
13, and the second formula in (60) we obtain

S = %T —4B(a—2p).

From this, and the definition (55), it follows that the total translation given by equa-
tion (54) is equal to zero. If ged(,23) = 2, then the code is periodic with period @,
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and hence the sum of the first & terms in (54) is equal to zero. This means that any
orbit of F whose a-code is the same as some a-code of F' is periodic with period
. Theorem (11) now states that the density of points for which this property holds
is 1, which completes the proof of the first statement of the theorem. U

9. ESCAPE ORBITS

In this section we prove the second statement of theorem 1: if & is even (hence
o is a multiple of 4), then the unbounded orbits have full natural density.

In this parameter range all orbits of the reduced system are unbounded (theorem
10), and from (50) we have that (F')%/4(z) = z+ a.e(z), for all z € Z. Then theorem
11 implies that there is a set I' of full density, such as, if x € I', then x has the same
a-code as some point z = z(x), and hence F*/#(x) belongs to one of the blocks
adjacent to the block of x. Moreover, the overall translation is approximately equal
to the local block length, and we must determine its exact value [see formula (80)],
to ensure that this translation can be sustained indefinitely. Note that if this is the
case, then the orbits escape quadratically, shifting by one block every « iterations.

Let C be a regular a-code, with Cy and C; as above. Considering the argument
used in the last part of the proof of theorem 10, we have

(68) |Co(x)| =2B —2¢(x) ICi1(x)] = ot — 2B +2¢(x)
so that (54) is replaced by
(69) Y Te=—S()+4B(0—2B)+2e(x)(4B — ),
ceC(x)

where S is defined in (55).

The functions S,R, T are no longer constant. They are related by the formulae
(70) S(x) = 2R(x)+2B[a—2P +2¢e(x)]
(71) T(x) = oR(x)+20%e(x)+V(x)
where

V(x) = 2ulp—ex)][B—¢e(x)+u+1—-cos(mz/2)]

wlut26(x)] [%‘g(x) 1 cos(mz/2)].
Finally,
(72) aS(x) = 2T (x) — 4a’e(x) — 2V (x) + oow (u+2¢(x)).

Using (68), and keeping in mind that, for all x, we have C(x+ &) = C(x) 42 and
C(x+ cos(mx)) = C(x), we find

(73) T(x) = T (x+cos(mx)) +2cos(mx)e(x) = T (x+ &) + 2a’e(x).

The next task is to adapt to the escape regime the probabilistic argument used in
the periodic case (lemma 13). We shall require a greater generality, and consider
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iterates of initial measures supported on shifted intervals [z,z+ o) for some z €
Z. To lighten up the notation, we shall continue to use the symbol u; for these
measures, highlighting the dependence on z only where necessary.

We decompose L, into the sum of ;" and y,”, supported, respectively, on the
residue classes 0,1 and 2,3 modulo 4. We use the unified notation y#, where € =
+ refers to sign of &(z) [cf. (50)], at any point of the support of . We further
decompose these measures into ,ufo and ,ufl , corresponding to even- and odd-order
intervals. The value of u;(z) is determined by the residues of z modulo & and
modulo 4, and hence

Y uho = Zﬂoo—— (w—2¢)

€L ZEZ
You = 2#01— “+28)
€7 €L

We shall use the notation

Ef () =) auf(2) Efj(§) =) aui;(z), je{01}.

ZEZ ZEZ

Then we have E, (&) =E, (&) +E, (). As in (63), we find:
Ez+1(§) = Zzﬂﬁrl(z)

= ZF/ Vuso)+ Y, FOous ()

F(y)
= EE(E) -2 T2 0w T2 _me(g) 26
The above recursion relation has solution
(74) Ef (&) =E§(§)+2r = % (o —1+2z—2ecos(mz/2)] + 2et,

and a straightforward calculation gives
(75)  EE(E%) —E§(E?) = a®(8+2€) +2ae(2z— 1) —4ocos(mz/2).
In place of (64) we now have, using (68)
EHl(&z)—]Ef(&z) = 40¢ + [w u+u w+28(w —uz)}
= 40¢ —|—2uw+48(w —u)
where

(76)  Of = wE; | (§) —ul;((§) = aly(§) —uEf (§) = —aE; () +wEf ().
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We now iterate this relation, to evaluate the telescopic sum E§ (£2) — E£(£2) =
* L [EE, (%) —Ef(2)]. Alengthy calculation using formulae (74)~(76) and the
procedure employed in the previous section gives

2 <“0§1E50—WOEIE21> = af2a(B-2)-4B>+e(1-3a+8B —22)
=0 =0

(77) +2(cos(mz/2)].

The final step is to express T in terms of the above expression. Since the functions
S,R, T are no longer constant, we shall need the following

Lemma 14. If & is even, then, for any x we have T(z+4) =T (z) —8ae(z).

PROOF. If @ is even, then equation (73) gives T(z+ &) — T (z) = —2a%£(z), so it
suffices to show that the value of 7 (z+4) — T'(z) depends only on &(z). Introducing

the notation yt(a) = (F')!(a), a short calculation gives

TOY) = T(2) = dae(2) [uo(2) — wii (2)] = 4ae () [axo(2) — 2B].

Let 7 be the smallest positive integer ¢ such that y,(Z) =z+4(mod ), and let k(z)

be defined by the equation y,(f) =z+4+ ak(z). We find that T = B! (mod a/4),
independent from z. Considering that € is constant along orbits, we iterate the above
relation to obtain

T(z+4)-T() = T()-T()+20 e(2)x(2)
7—1
- 2a£(z){oc [k(z)+2) x()(yt(z))] — 4ﬁr}.
=0
We must show that the expression k(z) +2Y."" %o (y,(Z)) is constant. With ref-
erences to formulae (45)—(48), let ¥ ™ and )y~ be the characteristic functions of the
intervals defined by db = +1 and db = — 1, respectively, and let y = ¥+ x . Then

7—1

7 k@)=Y 06N -2 0] =80 @) =Srapi
=0
where 8 is Kronecker’s delta. Let o' = ot/4; we have two cases.
Case I: / > . In this case we have ¥~ = o, and ¥ is the characteristic function
of the union of intervals [a — 4, o) + aZ. From (78) we obtain

T—1 7—1
(79) k@) +2Y 200:?) = Y 268 - L(2).
t=0 t=0

Thus the value of the left-hand side is equal to the number of points which fall
in the interval where db # 0, decreased by one unit if z and z + 4 lie in different
blocks. We have to show that such a number is constant, with the stated exception.
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By conjugating the orbit through z( for the map X — X + 43 (mod o) to the orbit
through z = |z9/4] for the map X — X + f3 (mod '), we reduce this problem to
showing that the number of elements of set

Alz) ={z+tB(mod ') : t=0,...,T—1} 0<z<a —1

which lie in the interval I = [a' — B, @), is equal to some integer ng for all z #
o/ —1, and to ng + 1 for z = o' — 1. We introduce the symbolic dynamics of rota-
tion by f on the circle [0, @’), obtained by assigning the symbol O to the interval
Ip =[0,a’ — B) and the symbol 1 to the interval /; defined above. The binary words
of length 7 obtained by varying z, are the same as the Sturmian words of any irra-
tional number sufficiently close to 8. A Sturmian language is balanced [21, theorem
6.1.8], meaning that the number of 1s appearing in these words assumes precisely
two consecutive values, say, ng and ng+ 1.
Now let

Ai(z) =A(z) N N(z) = #A:(2).

The set A(z— 1) is obtained from A(z) by shifting all points of the latter to the
left by one unit. The set A(a’ — 1) contains both end-points of /;. By construction,
a'—1¢A(o' —2), and hence, if we let ng =N(a' —2), we have N(a' — 1) = np+ 1.
Choose z such that N(z) = ng. The only way to have N(z— 1) =ng+ 1, is that, under
such a left shift, the set A|(z) gains one point on the right, and loses no point on the
left. Then O must be in A(z). If z # 0, then the pre-image o' — 8 of 0 also belongs
to A(z), and hence one point is lost in the shift. Thus z =0, namely z—1 = &’ — 1,
as required. We have shown that there is ng such that

N(z) = no if z£0 —1
YT Vo1 ifz=a/—1.

This means that the left-hand side of (79) is constant, and hence T(z+4) — T(z)
depends only on £(z), as required.

Case II: @’ < B. Then ¥ = yx; and y is the characteristic function of [0,2(a —
2B)) + aZ. The analysis is the same as that given above, with the opposite sign in
the expression {(z) in (78). We shall not repeat it, for the sake of brevity. [

Lemma 15. Let T and € be as above. Then if & is odd and €(z) = 1, we have

T(z) = —2az+a[2B(a—2B)+2(4B —3a)].

PROOF. The condition £(z) = 1 characterises the points which escape to +-oc. Equa-
tions (73) and lemma 14 give

T (z+7) =T"(z) —2ay Y(z) = 2 —cos(nz).
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Using the above and lemma 14, we obtain

oc/4 1
THz) = = Z [T*(z)+T7(2)]
205/471
= = ];0 [TH(z+4k)+ T  (z+4k+7y)] +a(o+y—4).

Using lemma 14, we compute

= ”Z)’z Xo(y WZyt x(y

oc/4 1 _
_ Z Z yt(z+4k)%O z+4k Z ytz+4k i ( z+4k))
e il yt(z+4k+}/) o (y(z+4k+y Z ytz+4k+7/) 7 (yt(z+4k+y))]
=0 =0
+o(a+y—4)
oa—1 [o/4—1

1
= 2T (T bl T )

=0

a—1 [fa/4-1 (2+4K) 1 (z+4k) (z+4k-+7) 1 (z+4k+7)
—2w Z Z Yt —x1 (0 )+ —x1(; )
t=0 k=0 a o

+o(a+y—4)
o—1
= 2(u) Ef wZE +a(oat+y—4).
t=0
The above expressions, together with (77), gives an explicit formula for 77 (z):

T"(z) = —2az+a[2B(a—2B) +2(4B —3a)].
The proof is complete. [].

We can finally complete the proof of the second part of theorem 1.

COMPLETION OF THE PROOF OF THEOREM 1. Assume that & is even, and let I'
be the full density set specified in theorem 11. Let x € I" be given, and let us assume
that the orbit of x drifts to the right: b(FO‘( )) = b(x) +4. Then there are precisely
two consecutive integers z* = z*(x), and z* + 1 with the property that z* =0 (mod 4)
and the a-code of x under F and that of z* or z* + 1 under F’ are the same. Lemma
15 and equation (72) yield

S(z) = —dz+4B (o —2B) + 12(B — o) — dcos(mz/2).
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Substituting this expression in (69), we finally arrive at the following formula for
the total translation under ¢ iterations of the Poincaré map F:

(80) F%(x) —x=4z+ 100t — 4 +4cos(mz/2).

One verifies that both values z = z* and z = z* + 1 produce the same value of the
right-hand side of (80).

Let x belong to the nth block Z,, that is, x,| < x < x,,, with x;, given by (6).
According to theorem 11, the set £, NI is partitioned into o /2 regular cylinder sets
Enkk=0,...,00/2—1, of 2n+ O(1) points each, corresponding to as many distinct
regular a-codes, plus a residual set A, of size O(1), corresponding to irregular
codes. Since the point x is regular and its orbit drifts to the right, there is a unique
even integer j = j(x) such that x € Z, ;. Then the points x and z* = (n — 1) +2;
have the same a-code for the maps F and F, respectively, and z* = 0(mod 4).
Substituting z = z* (or z = z* + 1) in (80), we obtain

F¥(x) —x =4no + 60 — 4B +4(1+2)).
We now compute the total translation Ax required to move a point x € &, ; to the
corresponding position within &, 4 ;, four blocks to the right. Considering the
expression (40) for the block size, and the fact that |, ;| = |E, j| +k+O(1), we
obtain, fori = 4:

Ax =

3
)] [(n+i)a—B] +4+8j =F%x) —x.

i=0

This identity shows that the total translation generated by a regular a-code sends
a point x € &, ; with €(x) = 1 into a point of E,4 ;, with the possible exception
of O(1) points at the boundary of =, ;. Hence these translations can be sustained
indefinitely. This set of points has density 1/2, and their orbits escape to infinity.
The result now follows from the fact that F is invertible, which accounts for the
escape of a complementary set of density 1/2. [

For completeness, we determine z*(x) explicitly, for x € I" with €(x) = 1. From
section 2 we find that the block number n(x) of x is given by

(o) = {2ﬁ—a+\/(a—2[3)2+8axJ L

2x

Theorem 11 states that there are 2n+ O(1) points in any regular cylinder set of Z,,.
Keeping in mind that the left end-point of the nth block is x,, [see equation (6)] and
that the length of the nth block is na — 3, we find

o= ) et [ |
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This gives z*(x) = an(x) + O(1), and hence
F%(x) —x =4an(x) + O(1).
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