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Abstract

When assessing the oil reserves of a given region, often the statistic
S = R/P is used, where R denotes the amount of proven reserves in
the region and P is the current rate of production. This statistic can
be misleading because the rate of production typically varies over time.
We investigate a general framework for oil discovery and production and
find the limit of S as time tends to ∞ for several selected models.
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1 Introduction

When assessing the oil reserves of a region, often the statistic S = R/P is
used, where R is the amount of known recoverable oil in the region and P is
the current rate of production. The S statistic can be misleading because the
rate of production is typically not constant but varies over time.

In 1956, M. King Hubbert [4] used curve fitting to predict that the peak of
oil production in the U.S.A. would occur between 1965 and 1970. Oil produc-
tion for the U.S.A actually peaked in 1970. In Hubbert’s analysis the profile
for oil production is approximated by a logistic curve, however Deffeyes [3]
claims that a normal approximation can give a better fit to the data and also
considers the Lorentzian curve. It is therefore desirable in our analysis of the
S statistic to allow for these or other types of profiles.

It is of vital interest to understand the behaviour of S in the limit as time
tends to∞, because when the statistic is bounded below by a positive number
it cannot give a good estimate of the time remaining for which oil can be
usefully produced. Broto [2] does some unpublished work in this direction.
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2 A preliminary result

We denote the quantity of oil that is ever discovered in a given region by C and
suppose that all of it is eventually produced. We suppose that the total amount
of oil discovered up to and including time t is given by a nondecreasing con-
tinuous function GX(t) such that limt→−∞GX(t) = 0 and limt→∞GX(t) = C.
If we define FX(t) to be FX(t) = GX(t)/C, then FX(t) is the cumulative dis-
tribution function of a random variable X. We suppose that the probability
density function fX(t) of X exists. Similarly, if GY (t) denotes all of the oil
produced up to and including time t, then we suppose that FY (t) = GY (t)/C
determines the cumulative distribution function of a continuous random vari-
able Y with corresponding probability density function fY (t). We call FX(t)
the discovery profile and call FY (t) the production profile.

The difference GX(t)−GY (t) between the cumulative oil discovered GX(t)
and the cumulative oil produced GY (t) is called the proven reserves; see [5],
page 59. It equals the amount of discovered oil remaining to be pumped out
of the ground at time t. The statistic S is determined by

S =
GX(t)−GY (t)

G′
Y (t)

=
FX(t)− FY (t)

fY (t)
.

We now prove a basic proposition about the limit of S as t→∞.

Proposition 1 Suppose that

lim
t→∞

fY (t) = 0. (1)

Then,

lim
t→∞

S = lim
t→∞

fX(t)− fY (t)

f ′Y (t)
.

If, in addition,

lim
t→∞

fX(t)

fY (t)
= L < 1, (2)

then

lim
t→∞

S = (L− 1) lim
t→∞

fY (t)

f ′Y (t)
.

Proof We have limt→∞(FX(t) − FY (t)) = 1 − 1 = 0. By (1) we may now
apply L’Hôspital’s Rule and obtain

lim
t→∞

S = lim
t→∞

FX(t)− FY (t)

fY (t)
= lim

t→∞

fX(t)− fY (t)

f ′Y (t)
.

Under assumption (2), we have

lim
t→∞

S = lim
t→∞

fY (t)(fX(t)/fY (t)− 1)

f ′Y (t)
= (L− 1) lim

t→∞

fY (t)

f ′Y (t)
.
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Note that the conclusion of Proposition 1 is stated in terms of probability
density functions, which are usually given more explicitly than are cumulative
distribution functions and are therefore easier to use.

3 Models of oil discovery and production.

In this section we specify a framework for oil discovery and production and
derived the limit of the S statistic for particular models within that framework.

Note that we must require that

FX(t) ≥ FY (t) ∀t ∈ R (3)

because oil can only be produced after it is discovered. In terms of the random
variables X and Y , (3) defines the property that Y stochastically dominates
X.

Suppose that we are given the discovery profile FX(t) and that Z = aX + b
for constants a ≥ 1, b > 0. Then FZ(t) is a shifted, rescaled version of
FX(t) and so is a reasonable candidate for a production profile. However,
it may happen that Z does not stochastically dominate X. For example, it
is impossible for one normally distributed random variable to stochastically
dominate another normally distributed random variable unless they have the
same variance.

If it is not true that Z stochastically dominates X, then a > 1 and for the
value t0 = b/(1 − a) it will be true that FZ(t0) = FX(t0). We have required
a ≥ 1 because in that case Z stochastically dominates X for t ≥ t0. In case
a > 1, we may define

FY (t) =

{
FZ(t) if t ≥ t0;
FX(t) if t < t0;

otherwise, we let FY (t) = FZ(t) ∀t ∈ R. An interpretation of the preceding
definition is that there is some time t0 in the past up to which all oil discov-
ered was immediately produced and after t0 some oil that is discovered is not
immediately produced. We will assume from now on that t ≥ t0, so that

fY (t) =
1

a
fX

(
t− b

a

)
. (4)

The distributions considered as possible discovery profiles in [3] are Normal,
Logistic and Cauchy (which in [3] is called Lorentzian). The corresponding
probability density functions are given by

fX(t) =


1√
2πσ

e−
(t−µ)2

2σ2 if X ∼ N(µ, σ);
e−(t−µ)/s

s(1+e−(t−µ)/s)2
if X ∼ L(µ, s);

1
π

r
(t−µ)2+r2 if X ∼ C(µ, r).

(5)
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We now find limt→∞ S for these distributions.

Theorem 1 If fY (t) is determined from fX(t) for constants a, b by (4), then

lim
t→∞

S =


0 if X ∼ N(µ, σ);
s(1− e−b/s) if X ∼ L(µ, s) and a = 1;
as if X ∼ L(µ, s) and a > 1;
b if X ∼ C(µ, r) and a = 1;
∞ if X ∼ C(µ, r) and a > 1.

Proof The theorem follows from Proposition 1, (4) and (5). For the normal
distribution Y ∼ N(aµ + b, aσ) and it is easy to check that L = 0 using a ≥ 1
and b > 0. Moreover, limt→∞ fY (t)/f ′Y (t) = 0. For the logistic distribution
Y ∼ L(aµ + b, as), L = 0 if a > 1 and L = e−b/s if a = 1. Moreover,
limt→∞ fY (t)/f ′Y (t) = −as. For the Cauchy distribution, Y ∼ C(aµ + b, ar),
L = a−1 and limt→∞ fY (t)/f ′Y (t) = −∞, which proves the theorem when a > 1.
When a = 1,

lim
t→∞

t3 (fX(t)− fY (t)) = −2rb

π
and

lim
t→∞

t3f ′Y (t) = −2r

π
.

Theorem 1 was proved for the logistic distribution and a = 1 by a direct
approach in unpublished work described in [2].
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