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Abstract

In this paper a model of oil depletion is analyzed in which the
shapes of field profiles are triangular and the sizes of successive fields
decrease monotonically. It is shown that the curve representing the
rate of production for this model is piecewise linear and concave up
to a certain point after which it is monotone decreasing. Equations
for natural smooth approximating curves having unique maxima are
derived. A related model of natural gas depletion with trapezoidal
shaped field profiles is also analyzed.
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1 Introduction

M. King Hubbert [5] used curve fitting to predict that the peak of oil produc-

tion in the U.S.A. would occur between 1965 and 1970. Oil production in the

U.S.A. actually peaked in 1970 and has been declining since then. Hubbert

used a logistic curve to approximate the rate of oil production. Deffeyes [2]

used normal and Lorentzian curves.

As far as the author knows, none of these approximations has ever been

given a theoretical justification. The logistic equation justifies the logistic

curve in population biology, but no interpretation of the logistic equation

to oil production exists. In this paper we analyze a model of oil produc-

tion introduced by Bentley [1] and give the first theoretical derivation of a

Hubbert-type curve.

Although oil depletion is a very serious topic, models of oil depletion

have not heretofore been rigorously analyzed. It is to be hoped that eventu-

ally, by analyzing models of oil depletion and comparing the results to the

data, understanding of the forces that drive actual oil depletion curves will

be increased. The models in this paper are rather simple, but as they are

apparently the first oil depletion models to be analyzed mathematically, we

consider the results of this paper to be important. Some results on the lim-

itations of the use of R/P statistics in assessing oil reserves were derived in

[3].

We suppose that in a given region oil is produced from an infinite succes-
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sion of oil fields of decreasing size. Let Gi(t) be the amount of oil produced

from oil field i up to time t. The cumulative amount of oil ever produced from

oil field i is Ci = limt→∞Gi(t). The cumulative amount of oil produced in

the region up to time t is G(t) =
∑∞

i=1Gi(t). The rate of oil production of the

ith oil field at time t, or profile of the ith field, is defined to be gi(t) = G′
i(t)

and the cumulative rate of production of the region at time t is defined to

be g(t) = G′(t).

Bentley [1] introduced a model of oil production for which gi(t) is shown

in Figure 1 for positive numbers δ, λ and mi for i ≥ 1. More precisely,
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Figure 1: Profile gi(t) of the ith oil field.
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and

Gi(t) =



0 if 0 ≤ t < (i− 1)δ;

1
2
mi(t− (i− 1)δ)2 if (i− 1)δ ≤ t < iδ;

Ci − miδ
2λ

(iδ + λ− t)2 if iδ ≤ t < iδ + λ;

Ci if t ≥ iδ + λ.

(1)

Bentley [1] introduced his model by an example in which Ci/Ci+1 = 0.8

for each i and δ/λ = 0.1. The function g(t) was plotted and gave a peak fairly

near the center. Bentley’s model is discussed in Strahan [4], page 44, where it

is suggested that field profiles skewed to the left (δ/λ is small) and falling field

sizes (Ci is decreasing) yields a Hubbert-type production curve. In practise,

the sharp ascent followed by more gradual decline is often caused by natural

gas originally present in the reservoir, which initially helps in pumping out

the oil. Later, it may be necessary to pump water into the reservoir to keep

up the well pressure as the rate of production declines.

For a fixed t, only a finite number of the field profiles gi(t) are nonzero.

Hence, g(t) exists for all t and is continuous.

Theorem 1 Given constants 0 < δ ≤ λ such that λ/δ is an integer and a

nonincreasing sequence mi, the function g(t) is continuous, piecewise linear

and concave in the interval 0 ≤ t ≤ λ. It is monotone decreasing in the

interval t ≥ λ. Therefore, g(t) takes on its maximum on a closed interval

(which can consist of a single point) intersecting the interval 0 ≤ t ≤ λ.

The function g(t) is continuous but piecewise linear. Moreover, it is

possible for it to take its maximum on an interval of nonzero length. It
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may therefore be unsatisfactory as a Hubbert-type curve.

To obtain a smooth Hubbert-type curve, we let consider the sequences

of parameters δ(n) = α/n and mi(n) = φ(i/n) for a constant α > 0 and

a Riemann integrable function φ(t). The corresponding cumulative amount

of oil produced up to time t for these parameters is denoted by Gn(t). We

define the limiting curve

G̃(t) = lim
n→∞

Gn(t) (2)

and also define g̃(t) = G̃′(t).

Theorem 2 For a given constant α > 0 and a given positive, strictly de-

creasing, differentiable, function φ(t) with bounded Riemann integral, the

function g̃(t) is strictly concave for t ∈ [0, λ] and decreasing for t ∈ [λ,∞).

The function g̃(t) therefore attains a unique maximum which occurs in the

interval [0, λ].

Theorem 1 is proven and the original model of Bentley with geometrically

decreasing field sizes is considered in Section 2. Theorem 2 is proven and a

model with φ(x) = Ae−θx for constants A, θ > 0 is analyzed in Section 3. In

Section 4, we analyze a model of natural gas depletion introduced in Bentley

[1] along with his oil depletion model. We show that that for the natural

gas model, when φ(x) = Ae−θx it is possible that exactly half of the total

production occurs at the time of peak production, a statement which is false

for the oil model. Some concluding remarks are made in Section 5.
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2 Properties of the piecewise linear model

We suppose that we are given constants 0 < δ < λ and a decreasing sequence

mi. Proposition 1 provides an explicit formula for G(t). Given a real number

x, we let bxc be the largest integer less than or equal to x and define x+ =

max(x, 0).

Proposition 1 The function G(t) is given by

G(t) =

bt/δc∑
i=1

1

2
miδ(λ+ δ)−

bt/δc∑
i=b(t−λ)/δc++1

miδ

2λ
(iδ + λ− t)2

+
1

2
mbt/δc+1(t− bt/δcδ)2.

Proof We observe that if 1 ≤ i ≤ b(t − λ)/δc+, then iδ + λ ≤ t; if

b(t − λ)/δc+ + 1 ≤ i ≤ bt/δc, then iδ ≤ t and iδ + λ > t; if i = bt/δc + 1,

then iδ > t and (i − 1)δ ≤ t; if i ≥ bt/δc + 2, then (i − 1)δ > t. Therefore,

(1) results in

G(t) =

b(t−λ)/δc+∑
i=1

1

2
miδ(λ+ δ) +

bt/δc∑
i=b(t−λ)/δc++1

{
1

2
miδ(λ+ δ)− miδ

2λ
(iδ + λ− t)2

}
+

1

2
mbt/δc+1(t− bt/δcδ)2.
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Proof of Theorem 1 Assume that λ/δ is an integer. If kδ ≤ t < (k + 1)δ

for an integer k ≥ 0, then Proposition 1 produces

G(t) =
k∑

i=1

1

2
miδ(λ+δ)−

k∑
i=bk−λ/δc++1

miδ

2λ
(iδ+λ− t)2 +

1

2
mk+1(t−kδ)2. (3)

The derivative of the expression (3) for t in the range kδ < t < (k + 1)δ is

g(t) =
k∑

i=bk−λ/δc++1

miδ

λ
(iδ + λ− t) +mk+1(t− kδ).

Thus, g(t) is continuous and piecewise linear with slope rk on the open in-

terval kδ < t < (k + 1)δ equal to

rk = mk+1 −
δ

λ

k∑
i=bk−λ/δc++1

mi.

For k ≥ λ/δ,

rk = mk+1 −
δ

λ

k∑
i=k−λ/δ+1

mi ≤ 0, (4)

where the inequality follows from the assumption that the mi are monotone

decreasing. Moreover, for k ≤ λ/δ − 2,

rk+1 − rk = mk+2 − (1 + δ/λ)mk+1 ≤ 0. (5)

As g(t) is continuous piecewise linear, (4) shows that it is nonincreasing for

t ≥ λ, (5) shows that it is concave for 0 ≤ t ≤ λ and therefore the maximum
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of g(t) must occur in a closed interval intersecting 0 ≤ t ≤ λ.

To determine the interval on which g(t) takes its maximum, suppose first

that there exists k such that rk = 0 and set k1 = min{k : rk = 0} and k2 =

max{k : rk = 0}. Then g(t) takes its maximum on [k1δ, (k2 + 1)δ]. If there

is no k such that rk = 0, then, with k∗ defined to be k∗ = max{k : rk > 0},

g(t) takes its maximum at (k∗ + 1)δ.

Example 1 Suppose that δ = λ. Then g(t) is maximal over the interval

[δ,Kδ], where K = max{i : mi = m1}. The amount of oil produced by

time Kδ is G(Kδ) =
∑K−1

i=1 Ci +
1
2
CK , while the total amount of oil ever pro-

duced is
∑∞

i=1Ci. Therefore, the proportion of oil produced by the end of the

peak interval may be an arbitrarily small proportion of the total oil produced.

Example 2 Consider mi = Aρi for constants A > 0 and ρ ∈ (0, 1). Then

for k ≥ λ/δ we have

rk+1 − rk = Aρk+2 − Aρk+1 − δ

λ

(
Aρk+1 − Aρk−λ/δ+1

)
= Aρk−λ/δ+1

(
ρλ/δ+1 −

(
1 +

δ

λ

)
ρλ/δ +

δ

λ

)
= Aρk−λ/δ+1χ(ρ),

where χ(ρ) = ρλ/δ+1 −
(
1 + δ

λ

)
ρλ/δ + δ

λ
. We see that ψ(0) = δ/λ > 0 and

that ψ(1) = 0. Moreover, χ′(ρ) = (1 + λ/δ)ρλ/δ−1(ρ − 1) ≤ 0 and so χ is

monotone decreasing in ρ. From this we conclude that ψ(ρ) ≥ 0 and hence

8



g(t) is convex for t ≥ λ.

3 Properties of the smooth model

In this section we prove Theorem 2 and consider the example φ(x) = Ae−θx

for A, θ > 0, which is the continuous analog of Ci geometrically decreasing.

Proof of Theorem 2 Using Proposition 1, we have

Gn(t) =
α(λ+ αn−1)

2

bnt/αc∑
i=1

φ

(
i

n

)
1

n

− α

2λ

bnt/αc∑
i=bn(t−λ)/αc++1

φ

(
i

n

) (
αi

n
+ λ− t

)2
1

n

+
1

2
φ

(
bnt/αc+ 1

n

) (
t− btn/αcα

n

)2

.

Since φ(t) is bounded, the last term tends to 0 as n → ∞ and since φ(t) is

Riemann integrable, G̃(t) defined by (2) equals

G̃(t) =
αλ

2

∫ t/α

0

φ(x) dx− α

2λ

∫ t/α

(t−λ)+/α

φ(x) (αx+ λ− t)2 dx. (6)

By considering t < λ and t > λ separately, one may show that

g̃(t) =
α

λ

∫ t/α

(t−λ)+/α

φ(x) (λ− t+ αx) dx.
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for all t ∈ (0,∞), that

g̃′(t) = φ

(
t

α

)
− α

λ

∫ t/α

(t−λ)+/α

φ(x) dx, (7)

for all t ∈ (0,∞), and that

g̃′′(t) =
1

α
φ′

(
t

α

)
− 1

λ
φ

(
t

α

)
+

1

λ
φ

(
t− λ

α

)
I[t > λ], (8)

for all t ∈ (0, λ) ∪ (λ,∞), where

I[t > λ] =

 1 if t > λ;

0 if t ≤ λ.
(9)

From (7) it follows that g(t) is decreasing for t ≥ λ and from (8) and

φ′(t/α) < 0 we see that g(t) is concave for 0 ≤ t ≤ λ. Therefore, g(t)

contains a unique maximum which occurs in 0 ≤ t ≤ λ.

We have seen in Example 1 of Section 2 that it is possible that only a

small fraction of the oil has been produced at the time of the peak rate of

production. Hubbert used symmetric curves in his analysis, for which the

ratio of oil produced at the time of peak production compared with the total

amount ever produced is 1/2. Although Hubbert said there was no reason

to only consider symmetric curves, it is desirable to give examples for which

a significant proportion of the total oil ever produced has been produced at

the time of peak production.
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Example 3 Consider the model defined by φ(x) = Ae−θx for constants

A, θ > 0. This is the continuous version of the model of Example 2, which

had geometrically decreasing field sizes. The total amount of oil produced in

this model is

lim
t→∞

G̃(t) =
1

2
αλ

∫ ∞

0

φ(x) dx =
Aαλ

2θ
.

To find the value t maximizing g̃(t), for t ∈ [0, λ], we set g̃′(t) given by (7)

equal to 0, which implies that the maximum rate of oil production occurs at

t̂ =
α

θ
log

(
1 +

λθ

α

)
. (10)

The amount of oil that has been produced at the time of peak production

is G̃(t̂) and the fraction of oil Φ produced by the time of peak production is

given by

Φ =
2θ

Aαλ
G̃(t̂). (11)

For t ≤ λ, (6) gives

G̃(t) =
Aα

λ

[(
−α

2

θ3
− αλ

θ2

) (
1− e−θt/α

)
+

(
λ

θ
+
α

θ2

)
t− 1

2θ
t2

]
(12)

and substituting (10) into (12) produces

G̃(t̂) =
Aα

λ

[
−αλ
θ2

+

(
αλ

θ2
+
α2

θ3

)
log

(
1 +

λθ

α

)
− α2

2θ3
log2

(
1 +

λθ

α

)]
.

(13)
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Substituting (13) in (11) and letting

y = λθ/α (14)

results in

Φ(y) = −2y−1 + 2(y−1 + y−2) log(1 + y)− y−2 log2(1 + y).

For some values of y, a significant proportion of oil is produced before peak

in this model. The maximum of Φ occurs at ym
.
= 2.7466 and the maximum

is Φ(ym)
.
= 0.3525. The function Φ(y) increases steeply to its maximum,

after which it decreases rather slowly. As y → 0, Φ(y) = 2
3
y + O(y2). We

observe also that for t > λ, (8) gives

g̃′′(t) = Ae−θt/α

(
− θ
α
− 1

λ
+

1

λ
eθλ/α

)
> Ae−θt/α

(
− θ
α
− 1

λ
+

1

λ

(
1 +

θλ

α

))
= 0,

proving that g(t) is strictly convex for t > λ (as opposed to strictly concave

for t ≤ λ, as was shown in Theorem 2).
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4 Models for natural gas depletion

In this section we analyze a model for natural gas depletion introduced by

Bentley [1] which is similar to the model for oil depletion excepting that the

field profile is now trapezoidal as opposed to triangular. The reason is that

production of natural gas fields is often constrained by pipe size rather than

internal pressure and production typically tales off more suddenly for gas

fields than it does for oil fields.

The notations Hi(t), hi(t) and Di have definitions for the natural gas

model similar to the definitions of Gi(t), gi(t), and Ci with respect to the oil

model, with the essential difference being the definition of hi(t) for natural

gas field i depicted in Figure 2 for positive numbers δ, λ and mi. We have

Di = miδ(λ+ δ)

and

Hi(t) =



0 if 0 ≤ t < (i− 1)δ;

1
2
mi(t− (i− 1)δ)2 if (i− 1)δ ≤ t < iδ;

Di − 1
2
miδ

2 −miδ(iδ + λ− t) if iδ ≤ t < iδ + λ;

Di − 1
2
mi((i+ 1)δ + λ− t)2 if iδ + λ ≤ t < (i+ 1)δ + λ;

Di if t ≥ (i+ 1)δ + λ.
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Figure 2: Profile hi(t) of the ith natural gas field.

Define H(t) =
∑∞

i=1Hi(t) and h(t) = H ′(t). The proof of Proposition 2

is similar to the proof of Proposition 1. We define I[t ≥ λ + δ] analogously

to (9).

Proposition 2 The function H(t) is given by

H(t) =

bt/δc∑
i=1

miδ(λ+ δ)−
bt/δc∑

i=b(t−λ)/δc++1

{
1

2
miδ

2 +miδ(iδ + λ− t)

}
− 1

2
mb(t−λ−δ)/δc+1 (b(t− λ− δ)/δc+ 2)δ + λ− t)2 I[t ≥ λ+ δ]

+
1

2
mbt/δc+1(t− bt/δcδ)2.

We next show that h(t) is increasing and concave for t ≤ λ and decreasing

for t ≥ λ.

Theorem 3 For given constants 0 < δ ≤ λ such that λ/δ is an integer

and a nonincreasing sequence mi, the function h(t) is continuous, piecewise

linear, concave and monotone increasing in the interval 0 ≤ t ≤ λ + δ.
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It is monotone decreasing in the interval t ≥ λ + δ. Therefore, h(t) takes

on its maximum on a closed interval (which can consist of a single point)

intersecting the interval 0 ≤ t ≤ λ+ δ.

Proof If kδ < t < (k + 1)δ for an integer k ≥ 0, then

H(t) =
k∑

i=1

miδ(λ+ δ)−
k∑

i=bk−λ/δc++1

(
1

2
miδ

2 +miδ(λ+ iδ − t)

)
− 1

2
mk−λ/δ ((k + 1)δ − t)2 I[k ≥ λ/δ + 1]

+
1

2
mk+1(t− kδ)2,

hence

h(t) =
k∑

i=bk−λ/δc++1

miδ +mk+1(t− kδ)

+mk−λ/δ ((k + 1)δ − t) I[k ≥ λ/δ + 1]

and therefore h(t) is continuous piecewise linear with slope on the interval

kδ < t < (k + 1)δ equal to

sk = mk+1 −mk−λ/δI[k ≥ λ/δ + 1].

For k ≤ λ/δ, sk = mk ≥ 0 and for k ≤ λ/δ−1, sk+1−sk = mk+2−mk+1 ≤ 0,

Therefore, h(t) is concave and nondecreasing for t ≤ λ+ δ. For k ≥ λ/δ+ 1,

we have sk = mk+1 − mk−λ/δ ≤ 0 and so h(t) is decreasing on the interval

t ≥ λ+ δ.
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Example 4 Suppose that mi = Aρi, 0 < ρ < 1. Then, for k ≥ λ/δ + 1,

sk+1 − sk = Aρk+2 − Aρk+1−λ/δ − Aρk+1 + Aρk−λ/δ

= Aρk+1(1− ρ)(ρ−λ/δ−1 − 1)

> 0.

and so h(t) is concave for t ≥ λ+ δ.

Let Hn(t) denote H(t) for the sequence of parameters δ(n) = α/n and

mi(n) = φ(i/n) for a constant α > 0 and a positive, differentiable, strictly

decreasing function φ(t) with bounded Riemann integral. Define H̃(t) =

limn→∞Hn(t) and h̃(t) = H̃ ′(t).

Theorem 4 For a given constant α > 0 and a given positive, strictly de-

creasing, differentiable, function φ(t) with bounded Riemann integral, the

function h̃(t) is strictly concave and is increasing for t ∈ [0, λ] and decreas-

ing for t ∈ [λ,∞). Therefore, h̃(t) attains a unique maximum at λ.

Proof By taking the limits of Riemann sums obtained from Proposition 2,

we obtain

H̃(t) = αλ

∫ t/α

0

φ(x) dx− α

∫ t/α

(t−λ)+/α

φ(x)(αx+ λ− t) dx,

and therefore

h̃(t) = α

∫ t/α

(t−λ)+/α

φ(x) dx,
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for t ∈ (0,∞),

h̃′(t) = φ

(
t

α

)
− φ

(
t− λ

α

)
I[t > λ]

for t ∈ (0, λ) ∪ (λ,∞), and

h̃′′(t) = α−1φ′
(
t

α

)
− α−1φ′

(
t− λ

α

)
I[t > λ]

for t ∈ (0, λ) ∪ (λ,∞). It follows that h̃′(t) > 0 for t < λ, that h̃′(t) < 0

for t > λ, and that h̃′′(t) < 0 for t < λ. Therefore h̃(t) is strictly concave

and strictly increasing on the interval (0, λ) and is strictly decreasing on the

interval (λ,∞). Hence, h̃(t) takes its maximum at t = λ.

Example 5 Suppose that φ(x) = Ae−θx for A, θ > 0. Then, for t > λ,

h̃′′(t) = (eθλ/α − 1)Aθα−1e−θt/α > 0

and so h̃(t) is convex for t > λ. The total amount of oil ever produced is

lim
t→∞

H̃(t) = αλ

∫ ∞

0

φ(x) dx =
Aαλ

θ
.

The amount of gas produced at time t = λ is

H̃(λ) = αλ

∫ λ/α

0

Ae−θx dx− α2

∫ λ/α

0

Axe−θx dx

=
Aαλ

θ
− Aα2

θ2

(
1− e−θλ/α

)
.
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The fraction of oil produced at time λ, given by

Ψ =
H̃(λ)θ

Aαλ
,

equals

Ψ(y) = 1− y−1(1− e−y)

where y is defined by (14). As Ψ′(y) = y−2 (1− e−y(1 + y)) > 0, the function

Ψ(y) is increasing and, since limy→0 Ψ(y) = 0 and limy→∞ Ψ(y) = 1, there

is a unique value yh
.
= 1.5936 for which Ψ(yh) = 1/2. For y = yh, exactly

half of the cumulative gas production occurs at the time of peak production.

However, h̃(t) is not symmetric, as it is concave for t < λ and convex for

t > λ.

5 Conclusion

We have demonstrated that Hubbert-type curves can be derived from simple

models. Unfortunately, none of the curves produced here are symmetric.

Another feature of our analysis is that the function φ(x) must have bounded

Riemann integral, excluding the possibility that φ(x) decreases according to

Zipf’s law, which seems to describe the distributions of some real oil field

sizes; see [2]. Future research in this area could include other fixed field

profiles, random field profiles or functions φ(x) with unbounded Riemann

integral.
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