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Abstract. We consider the integer flow polynomials on directed planar graphs. A summa-
tion formula of the flow polynomials over possible strength and spatial distribution of sinks
of flow reported by Arrowsmith, Mason and Essam (AME) in 1991 implies the identity
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forn =0,1,2,--- and t = 1,2,3,---. Motivated by the product forms of this formula we
discuss combinatorial and determinantal identities of flow polynomials and related other
polynomials in the present paper. First we show that the Bender-Knuth formula of plane
partition can be regarded as a g-analogue of the above AME formula and these formulae are
derived from Macdonald’s summation formula of Schur polynomials. We define the ¢-flow
polynomials and its multi-variable generalization and discuss the relations between the flow
polynomials and the Schur polynomials. Two different proofs of the Macdonald formula
recently given by Bressoud and by Okada, respectively, are reviewed from the viewpoint of
flow polynomials. Recent work by Johansson on a random growth model implies an interest-
ing similarity between the AME formula and the Gaussian orthogonal ensemble of random
matrices and calculation of physical quantities in it. Following the standard argument of the
random matrix theory we give determinantal expressions to the flow polynomials, in which
matrix elements are given by the discrete orthogonal polynomials. Probability measures
of ensembles of flow polynomials having determinantal expressions are introduced and it is
shown that the Macdonald formula provides probability laws on these probability measures.

Keywords. Flow polynomials, directed graphs, Schur polynomials, Macdonald formula,
g-analogue, random matrix theory, orthogonal polynomials, determinantal probability mea-
sures



1 Introduction

1.1 Integer Flows on Directed Graphs

Consider a graph G = (V, E), where the set of vertices (resp. edges) of (G is denoted by V/
(resp. F). Let D(G) be the set of directed graphs obtained by directing the edge set F of
(7 in all possible ways. Then each directed graphs H € D(() consists of a set of vertices V/
and a set of arcs (oriented edges) A.

Fix an integer n € Z* = {0,1,2,---}. An improper (n + 1)-flow on the directed graph
H=(V,A)eD(G)isamap ¢: A — Z,,1 ={0,1,2,---,n} such that

> ¢la)= > ¢(a) (1.1)

acA acA,

for every vertex v € V, where A}, A- are respectively the sets of arcs oriented in and out
of the vertex v. The number of such flow is given by a polynomials of n, which we write as
F(n,H).

The situation, which we consider, is generalized by introducing a source and sinks of
flow as follows. In V(H) a vertex O is chosen as a source of strength m(< n) and a set of
vertices {s1, 2, - -, Sk} are considered as sinks of strength my, mo, - - -, my, respectively, with
the condition Zle m; = m. That is, we consider a map ¢ : A — Z,,;; such that (1.1) holds
for any vertices v € V'\ {0, s1,- - -, si} and that

Y. pla)+m = > $la), (1.2)

acA} acA,
Yo opla) = D #la)+mi, i=1,2,-- k. (1.3)
acAY, acA,,
The number of such flows with a source and sinks may be a polynomial of mq,mg, -, my.

By definition, if m; = 0 Vi, this polynomial is reduced to be F(n,H). The conditions
(1.1)-(1.3) ensure the conservation of flow in the system.

Arrowsmith, Mason and Essam [1] studied the integer flow polynomials on the following
special cases on directed planar graphs. Let t € N = {1,2,3,---} and define a subset of Z?

Vi={(z,y) €Z*: 2 +y—even, 0<y<t, —y<z<y}

and FE; be the set of all edges which connect the nearest-neighbour pairs of vertices in V;.
Arrowsmith et al. considered such a directing A, that all edges are oriented in the positive
direction of the y-axis. An example of the directed graph H; = (V;, A¢) with ¢ = 5 is shown
in Figure 1. The source is on the origin O = (0,0) and the sinks {s1,- -, sx} are chosen from
the vertices on the upper ends of V;:

Vi={(=t,t), (=t +2,t),---,(t —2,1), (t, 1) }.

If we think that the strength of sink can take a value 0, all of ¢ + 1 vertices on V; can be
regarded as sinks. We specify the strength of the sink at (—t+2k,t) as n(—t+2k) > 0 for k =
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0,1,---,t and the total number of possible flows is denoted by Fy(n(—t), n(—t+2),---,n(t)),
which is a polynomial of n(—t),---,n(t) (see (1.7) with (1.6) below). By the conservation of
flow, the strength of the source O should be n = >t n(—t + 2k).

y
(-1, 1) A (t, 1)

= X

Figure 1: The directed graph H; = (V;, A;) with ¢t = 5.

The reason why such special directings of edges with a source and sinks was chosen was
clearly explained in [1]; there is established a bijection between the set of such integer flows
and trajectories of an interacting particle system called vicious walkers with fixed start-points
and end-points on a spatio-temporal plane (see Section 3.1 below). Many applications of
vicious walker models in the statistical mechanics and the condensed matter physics are
described by Fisher in his Boltzmann medal lecture [10]. See also [9] and references therein
for the relation between vicious walker problems and polymer physics. It should be noted
that the flow polynomial Fy(n(—t),n(—t+2),---,n(t)) gives the special value at a parameter
p = 1 of the partition function of the friendly walkers [28, 7, 16].

1.2 Arrowsmith-Mason-Essam Formula

The following formulae were conjectured by Arrowsmith et al. [1]:

k . .
0y 0m(—t + 2K) = 1,0, -, 0) — [ "t Dezina

: for 1 <k <t-—1, (1.4)
i1 (Z)t—2i+1

and

Z Z Z 1 (Z n(—t+ 2]{;) = n) E(n(—t),n(—tJr 2)7 o 7n(t))

n(—t)>0 n(—t+2)>0 n(t)>0 k=0



- [(ﬁﬁm (n 420 — 1)or—ait3 (1.5)
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where (a)y is the Pochhammer-symbol; (a)o = 1 and (a)y = a(a+1)(a+2)---(a+k—1) for

k=1,2,3,---, 1(w) is an indicator function such as 1(w) = 1 if the condition w is satisfied

and 1(w) = 0 otherwise, and |a] denotes the largest integer not greater than the number a.
Here we define the variables {\;}¢_, as functions of {n(—t + 2k)}.=} by

t—1

A=Y n(—t+2k), i=12,---,4, (1.6)
that is,
A= n(=t)+n(—t+2)+--+n(t—6)+n(t—4)+n(t—2)
Ao = n(—=t)+n(—t+2)+---+nt—6)+n(t—14)
As = n(—t)+n(—t+2)+---+n(t—6)
A1 = n(=t)+n(—t+2)
At = n(—1).

Then the formula (1.4) will be generalized and simply expressed as [18]

Fin(=t),n(—t +2),- - n(t) — [ N ti=?

1<i<j<t J—1

(1.7)

Assuming (1.7), (1.5) can be written as the following equality, which we call the Arrowsmith-
Mason-Essam formula in the present paper.

Formula 1.1 (Arrowsmith-Mason-Essam)
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1.3 Bender-Knuth Formula and Macdonald Formula: A Hierarchy

Guttmann, Owczarek and Viennot [13]| noticed a simple bijection between vicious walker
trajectories (i.e. flows on the directed graph) and semi-standard Young tableaux. This
observation led them to regard the Arrowsmith-Mason-Essam formula as a ¢ — 1 limit of
the following formula known as the Bender-Knuth conjecture [6, 12].

Formula 1.2 (Bender-Knuth)

)\Z’—)\j+j—i 1 _
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The bijection found by Guttmann et al. implies that the number of flow with fixed
strength of sinks, Fy(n(—t),n(—t + 2),---,n(t)), is equal to the total number of distinct
semi-standard Young tableaux on a given Young (Ferrers) diagram. The Young diagram
is specified by a partition A = (A1, Ag,- -+, A) with Ay > Ay > .-+ > X\, of an integer
N = 3t A The relation between {n(—t + 2k)}.=% and X\ is given by (1.6) and N —
St S n(—t +2k) = Lt — k)n(—t + 2k). Krattenthaler, Guttmann and Viennot [18]
claimed that Fy(n(—t),n(—t + 2),---,n(t)) is thus obtained as a value at ; = xo = -+ =
x; = 1 of a function s)(z1, T2, -+, x;) of ¢ variables {z;}_,, which is specified by a partition
A and called the Schur polynomial;

Fin(—t),n(—t +2),---,n(t)) = sx(xy,m2, - - -, x1)| (1.8)

T1—T9——xt—1"

It was also claimed by Krattenthaler et al. [18] that the Bender-Knuth formula is a corollary
of a summation formula of >7,¢ (nt} S a(x1, -+, 2). This summation formula, which we call
the Macdonald formula (eq. (2') on p.84 in [20]), can be written as the following form.

Formula 1.3 (Macdonald)

det(@; " iciger  det(el = a0

%

>

t—3 i—1 2%—j .
0 e n<n  det(@ )< < det(z; " — a7 isigse
Thus we have the hierarchy of formulae.

Macdonald Formula  (on polynomials of {z;})

Bender-Knuth Formula  (on polynomials of ¢)

Arrowsmith-Mason-Essam Formula  (on polynomials of {n(—t + 2k)})

One of the purpose of the present paper is to discuss this hierarchy using flow polynomials.
In Section 2 we generalize the flow polynomials by introducing variables x4, - - -, x; and
define the polynomials of them, Fy(n(—t),n(—t+ 2),---,n(t);z1,- -, x:), so that

E(’I’I,(—t),n(—t + 2)7 e ,n(t);$1, e 7xt) - S)\($1, e 7xt)7
and

Fi(n(—t),n(—t+2), - ,n(t);x1-- -,z Fin(—t),n(—t +2),---,n(t)).

r1=xo—--=xt=1
This gives another proof of the formulae (1.7) and (1.8) given by Krattenthaler et al. [18],
where in our proof we do not need to use the bijection between flows and Young tableaux
but we show that the generalized flow polynomial and the Schur polynomial satisfy the
same recurrence equation. There in order to take the limit z; — 1, 1 < Vi < ¢, we
introduce the g-flow polynomials, Fi(n(—t),---,n(t);q). We also show in Section 3 that



the equivalence between the generalized flow polynomial and the Schur polynomial can be
proved by applying the Gessel-Viennot theorem to enumeration problem of nonintersecting
paths. We notice that by considering the 21 = 22 = -- - = x; = 1 case of the Gessel-Viennot
determinant (binomial determinant) Essam and Guttmann [9] derived an expression for the
flow polynomial (3.5), which is different from (1.7). We explain that the expressions (1.7)
and (3.5) can be considered to be conjugate to each other in the sense of the conjugate of
Young diagrams representing partitions.

In Section 4 we explain how to derive the Bender-Knuth formula from the Macdonald
formula and the Arrowsmith-Mason-Essam formula from the Bender-Knuth formula.

1.4 Proofs of Macdonald Formula

In the present paper we review two different proofs of Macdonald formula in Section 5 and
Section 6. The former proof is essentially equivalent with the “elementary proof” given by
Bressoud [5], but there we put an emphasis on the fact that the LHS of Formula 1.3, the
summation of ratios of determinants, satisfies a recurrence equation and that the RHS of
the formula gives a compact solution for it. The latter proof given in Section 6 is owing to
Okada [24]. The Macdonald formula states that the summation of determinants is expressed
by single determinant with an appropriate prefactor. Okada considered such a summation
of determinants as a minor summation of a larger-sized determinant and gave a general
formula to express it by a Pfaffian [23]. Then the problem is how can we express the Pfaffian
by a determinant [27]. Pfaffian identities given by Okada [24] enable us to perform this
transformation and the Macdonald formula is concluded.

1.5 Random Matrix Theory and Orthogonal Polynomials

The LHS of the Arrowsmith-Mason-Essam formula (Formula 1.1) can be written as follows.
Let hj = Aj+t—7,1 <j <t, and then

1 1

(LHS) = —x = 3 o % 1<lrga<>§{hi}§t+n—l> T -kl (19
H il Ch€Zt  hieZT == 1<i<i<t
=1

The random matrix theory treats the distribution functions of eigenvalues {y;}& ; of N x N
random Hermitian matrices in the form

—EZN y2. B
Pna(yr,- -+ yn) = const. x e 22i=1% [T |y — g1, (1.10)
1<i<j<N

where the index 3 takes the values 1, 2 and 4 depending to the constraints on the ensemble
of random matrices and each cases are called the Gaussian orthogonal ensemble (GOE),
Gaussian unitary ensemble (GUE), and Gaussian symplectic ensemble (GSE), respectively
|21, 8]. Under these distributions (1.10), a function Ag(#) called the level spacing is calculated
as

As0) = [~ [T 1 (min i} 2 0) Puaon, o uwddyn - dgy. (111)

6



Johansson [17] studied the similarity and difference between (1.9) and (1.11) with (1.10).
(Strictly speaking, (1.9) corresponds to the 8 = 1 (GOE) case of (1.10), but Johansson
considered the g = 2 (GUE) case [17]. See also [2, 3].) The main difference is that the
eigenvalues y;’s are continuous variables (real numbers), while h;’s are discrete variables

(nonnegative integers). The Gaussian kernel e” 129 is missing in (1.9) and some other
kernel should be introduced in (1.9). In spite of these differences, the similarity between the
functional structures of measures and the quantities which we calculate implies the possible
applications of the techniques developed in the random matrix theory to the present flow
polynomial problem.

Orthogonal polynomials play important roles in the random matrix theory, since the stan-
dard calculation is started by giving determinantal expressions to the distribution functions
Png(y1, -+, yn), in which the matrix elements are given by the orthogonal polynomials. In
Section 7, after giving a brief review of such a method of random matrices, we introduce
two sets of discrete orthogonal polynomials, which are defined using the Meixner polyno-
mials [19, 17| and the little g-Jacobi polynomials [19], respectively. Using these discrete
orthogonal polynomials in matrix elements, the determinantal expressions are given to the
anisotropic-flow polynomials and the ¢g-flow polynomials.

Motivated by the random matrix theory we consider ensembles of these flow polynomials
and define the probability measures having the determinantal expressions. On these measures
the Macdonald formula provides probability laws.

2 Flow Polynomials with Fixed Sinks and Schur Poly-
nomials

2.1 Recurrence Equation of Flow Polynomials

By definition of the flow polynomials Fy(n(—t),n(—t + 2),---,n(t)) on H, = (V, A;) given
in Section 1.1, it is easy to confirm that they satisfy the recurrence equation

E(?’I,(—t), n(_t + 2)7 T 7n(t))
n(—t+2) n(—t+4) n(t—2)

= > Yoo > Foaln(=t) o (n(—t+2) — f(—t+2)),

f(=t+2)=0 f(—t+4)=0  f(t—2)=0
F=t42) + (=t 4+ 4) = f(=t +4)), - fE = 4) + (0t = 2) = f{t =2)), f(t = 2) + (1))

for t = 2,3, with the initial condition
Fi(n(—1),n(1)) = 1. (2.2)

As illustrated by Figure 2, (2.1) constructs Fy(n(—t),n(—t+2),---,n(t)) from F,_(n'(—t+
1),---,n/(t—1)) by summing up all possible ways of flows { f(—t+2k)}.=! from the vertices
with y =t — 1 to those with y = t.



n(-t) n(-t+2) n(-t+4) n(t-4) n(-2) n(1)

S-142) fl-t+d) NS f(t-2)

n’(-(+-1)) n(-(1)42)  n'(-(-1D)+4) n’((+-1)-2) n’(-1)

Figure 2: Construction of Fy(n(—t),---,n(t)) from Fi_1(n/(—t+ 1), ---,n/(t = 1)).

Performing the first and the second recurrence of (2.1) starting from (2.2) gives

n(0)
Fy(n(=2),n(0),n(2)) = Y 1=1+n(0) and
F(0)=0
F3(n(=3),n(=1),n(1),n(3))
n(=1) n(1)
= 2 2 Bn(=3)+ (n(=1) = f(=1), f(=1) + (n(1) — f(1)), f(1) +7n(3))
F(=1)=0 f(1)=0
n(=1) n(1)
= > 2 DIH{/=D+ D))}

H(=1)=0 f(1)=0

1
= (4 a0+ n(=1) (14 Sa(=1) +0(1))).
Solving (1.6) for {n(—t+2k)}.—% with ¢ = 2 and ¢t = 3 gives n(—2) = A3,n(0) = A\; — Ay and
n(—3) = Az,n(—1) = Aa — Az,n(1) = A\; — Ao, respectively, and substituting them in above
results gives
AM—A+2-1
Fy(n(=2),n(0),n(2) = T+ (=) = 220 and
1
Fa(n(=3),n(=1),n(1),n(3) = {1+ 1 = )H1+ O =)} (14 500 = )
A=A +2-1 o Ao — A3 +3—2 o As— A +3—-1
2—-1 3—2 3—1
N— A t+Hj—i

- I

1<i<j<3 J—1

In order to prove that the solution of (2.1) with (2.2) is generally given by (1.7) for an
arbitrary ¢, we generalize the flow polynomials and the recurrence equations as follows.

2.2 Generalized Flow Polynomials

Definition 2.1 Lett € N and z; € C,i = 1,2,--- L. Define Fy(n(—t), -, n(t);x1, -, )
as a unique solution of the recurrence equation

Fi(n(=t),n(—t+2), -, n(t);x1, -, )

8



n(—t+2) n(—t+4) n(t—2)

= oo > Y Bt 4 (n(—t+2) = f(—t+2)),

F(=t42)=0 f(—t+4)=0  f(t-2)=0
F=t42) (=t +4) = f(=t +4), -, f{E = 4) + (n(t = 2) = f(t = 2)),

FE—2) Fn(t)zn, - mua) x T DA 0 (2.3)
fort =23, with the initial condition
Fy(n(=1),n(1); 21) = 27" (2.4)
By this definition the following properties are observed.
Lemma 2.2 (i) Fyn(—t),---,n(t);x1, -, x:) is a homogeneous polynomials of degree

L — k)n(—t +2k) inxy, -, 10

(“) Ft(n(_t)v o 7n(t); Ty, 7xt)|z1:...:1;t:1 — Ft(n(_t)v e 7n(t))'

As we have done in Section 2.1, we can solve the recurrence equation for ¢t = 2 and 3 as

n(0)
Fy(n(=2),n(0),n(2); 21, 32) = 3 Fi(n(=2) + (n(0) — £(0)), f(0) + n(2);21) a5 2@
£(0)=0
n(0) n(0)+1 _ 1
LY DO O) DO (=)0 (Z2/T1)
F00 a1 — 1
FDHnOFT n(=2)
n(—2)+n(0)+1 n(—2)
= 12 2 , and
I 1
‘$2 1 ‘
FS(n(_3)7 n(_1)7 77,(1), ’I’I,(-?)), X1, T2, $3)
n(-1)  n(1)

= X D B(=3)+(n(=1) = f(=D), [(=1) + (n(1) = f(1)), f(1) + n(3);
(=1)=0 £(1)=0

T1, %) X $g(—3)+f(—1)+f(1)

?’L(—l) n(l)

= Y > (xla:2)n(—3)+(n(—1)—f(—1))${(—1)+(n(1)—f(1))
F(=1)=0 f(1)=0

(2o /21)f D= _

gD

$2/$1 —1
(a:la:2x3)n(—3)($1x2)n(—1)x711(1) y [<$3>n(—1)+n(1)+2 <$3)n(—1)+1 <$2)n(1)+1
($2/$1—1)($3/$1—1)($3/$2—1) T

I
n(1)+1 n(—1)+1 n(1)+1 n(—1)+1
T
X1 Hi) X1 Hi)

T



xn(—3)+n(—l)+n(l)+2 a:n(—S)Jrn(—l)Jrl a:n(—S)
xn(—3)+n(—l)+n(l)+2 a:n(—S)Jrn(—l)Jrl a:n(—S)

n(—3)+n(—1)+n(1)+2 n(—=3)+n(-1)+1 n(—3)
L3 L3

2 oz 1
2
r5 we 1
2
x5 wg 1

2.3 Schur Polynomials and Proctor’s Lemma

Let t e Nand \; € ZT with \; > X\g > -+ > X\, > 0. Define

Ajtt—j
Az, @) = detb(z T icigz
A+Ht—1 Ao+t—2
$11+ $12+ . $i\t
At+t—1 Ao+t—2 A
B $21+ $22+ L a:2t
A+Ht—1 Ao+t—2 A
x; 1+ z; 2+ ce t

If we set xp = x¢ for 1 < k < £ <t, then Ay = 0, since then the k-th row is equal to the ¢-th
row. Then A, is divisible by each of the differences xp — z¢, 1 < k < £ < t, and hence by
their product [T;<;;<;(%: —2;). This product of all differences is known as the Vandermonde
determinant, which is nothing but Ag;
Ao(wr,- -+ mi) = deb(w; <oz = [ (0 —ay). (2.5)
1<i<j<t

Therefore it is concluded that the ratio of two determinant Ay/A, is a polynomial in
Ty, -, ;. Moreover, we can see that it is a homogeneous polynomial of degree S2F | \;
in &y, -, x.

Only using the fundamental properties of determinant, Proctor proved a lemma in [25]
that the polynomials {Ay(z1,- -, x)/Do(x1, - -, 2¢) }¢ satisfy the recurrence equation

A)\($1,"',$t) . Z A,u(xlv"'vxt—l) ZZ:MFZZ:W

= X Tf
A0($1, e 7$t) Ai>pi>Aig1,6=1,2,,t—1 A0($17 T xt—l)

for t = 2,3,---. For t = 1 we have Ay, (21)/Ao(21) = 27*. The polynomial Ay/Ag is called
the Schur polynomial [20, 11, 26].

Definition 2.3 (Jacobi-Trudi) Fizt € N and \; € Z1 with A\ > Ao > -\, > 0. For
x; € Cyi=1,--+,t, the Schur polynomial sx(x1,---,x¢) s defined by

Ajt—j
det(@ " iz

det(z; 1< j<t

S)\($1, e ,$t)

Then we have the following lemma.

Lemma 2.4 The Schur polynomial s\(x1,- -+, x;) satisfies the recurrence relation
DV L
S)\($17"'7xt) - Z S#($1,---7xt_1) x;z:l szl'u ]

AiZ#iZ>\i+1,i:1,2...,t_1

10



2.4 Equivalence of Generalized Flow Polynomial and Schur poly-
nomial

The initial condition (2.4), which we put, does not depend on the variable n2(1). Assume that
Foa(n/ (—t+1),---,n/(t—1); 21, - -, ;1) does not depend on n’(t—1), then the independence
of Fy(n(—t),---,n(t);x1,---,x:) on n(t) is concluded by the recurrence equation (2.3). This
induction proves that Fi(n(—t),---,n(t);x1,---,x;) is independent of n(t), which is already
observed in the explicit solutions of recurrence equations for ¢ = 2 and 3 given in Section
2.2. Under this observation, we define F} by

t—1 t—2
E(n(—t),---,n(t);xl,---,xt)—Ft(Z —t+2k), > n(—t + 2k), (—t);xl,---,xt>.
k=0

k=0

Then the recurrence equation (2.3) is written as

-1 -2
E(Z —t+2k),> n(—t+2k),---,n(— t);xl,---,a:t>
k=0

k=0
n(—t+2) n(—t+4) n(t—2) t—1 -2

F(—=t42)=0 f(—t+4)=0  f(t—2)=0 P P
- t—1
B Z n(—t+2k) — f(—t+2);2,- - 7$t_1> w:(—tHZkzl f(—t+2k)‘

k=0

Let A, = S07% n(—t+2k) and py = A\, — f(t—2s) for s = 1,2, -+, ¢ —1. Then the summation
with respect to f(—t+2k) from 0 to n(—t+ 2k) is realized by the summation with respect to
Wik from A\y_gq to Ay foreach kK =1,---,¢ — 1 and thus the recurrence equation becomes

Ft(Alv"'vAt;xlv"'vxt)

— 3 Fooa(p, oy s @1, Ty) 5

AiZ i 2 Ai41,8=1,2, 81

Zk 1Ak~ Zk 1“k

Lemma 2.4 shows that the above generalized flow polynomials and the corresponding Schur
polynomials related by the variable transformation (1.6) satisfy exactly the same recurrence
equation. Since the initial conditions are the same,

Fyn(=1);21) = 277 = 23" = s, (2),
the following equivalence is proved.

Theorem 2.5 The generalized flow polynomial Fy(n(—t), -, n(t);x1,- -+, x¢) is independent
of the value n(t) and, if X = (\1,-- -, \¢) is defined by {n(—t + 2k)},=% through (1.6), then

Fi(n(=t),---,nt);x1, -, x¢) = sal®1, -+, Tp)-

11



That is,

Ajt—j
det(@;" " ) 1<

=
det(x; 7 )1<ij<t
T n(—tr2k)i—j

det <xl )
1<4,5<t

det(z; 7 )1<ij<t

(2.6)

2.5 ¢-Flow Polynomials and their ¢ — 1 Limits
Let ¢ € C and define the g-flow polynomials as follows.

Definition 2.6
Fy(n(=t),n(—t +2),---,n(t);q) = F(n(—t),n(=t +2),---,n(t); ¢, ¢, q).

Theorem 2.5 gives

det (g(t—i+ D +t=3)
Fin(=1), -, n(t);q) — 20 )

1<i, <t

det(q(t—iJrl)(t—j) ) 1<i, i<t

Let z; = ¢t 1 < i <t. Then
) ) t
det(q(t_l+1)(>\j+t_J))1§i,j§t — H 2 X Ao(zl7 e 7zt)7
i—1
where /A, is the Vandermonde determinant (2.5), and we have

t
det(q(t—z+1)(>\j+t—J))lgi’jgt _ sz % H (Zi . zj)
=1

1<i<j<t

— f[ q)\i+t—i % H q)\j+t—j % H (q)\i—Aj+j—i o 1)
=1

1<i<i<t 1<i<i<t

_ qzzzli)\iJr%(t—l)t(tJrl) H (PNt ),

1<i<j<t
The product formula for the g-flow polynomials is thus obtained as follows.

Corollary 2.7 Assume the relation (1.6), then

1 _ q)\i—)\j+j—i

Fin(=t),- - n(t);q) = ¢= ™ ]

1<e<5<t

e

The formula (1.7) is immediately follows as the ¢ — 1 limit of this result.
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Corollary 2.8

Ft(n(_t)vn(_t+2)7'"7n(t)) - (lli_r)rllFt(n(_t)vn(_t+2)7'"7n(t);Q)

: H Ai— A +g—1
1<i<j<t J—1
I (1

- 1+ —— S n(—t+2k+2j) .
=0 k—1 Z+1j:0

where (1.6) is assumed.

As a special case of Corollary 2.8, we can consider the case such that, for a fixed k,
1<k<t—1,n(—t+2¢) isnif £ =k and is zero otherwise. Since (1.6) gives \; = n for
1<i<t—kand \;=0fort—k+1<i<tandthus \; — A\jisnif 1<i<t—-k<j<¢t
and is zero otherwise, we have

Ft(O,---,O,n(—t+2k5):n,O---,O) - H w:H H Liz

In the second equality we have used the symmetry between k and ¢ — k and the last equality
gives (1.4). This special case of flow polynomial is well studied as the number of watermelon
configurations with deviation k for the vicious walker problem and the above formula was first
derived by Essam and Guttmann [9] (see Section 3.4 below). For the number of watermelon
configurations with fixed deviation see [13|, where an interesting relation with the MacMahon
formula of plane partition is discussed.

3 The Gessel-Viennot Determinant and Conjugate Ex-
pression of Essam and Guttmann

3.1 Nonintersecting Paths
Let t € N and define a subset of Z? as

V/={(z,y) €Z* :z+y=even, 0 <y <t}

and A} as the set of all arcs which connect the nearest-neighbour pairs of vertices in V/ and all
of which are oriented in the positive direction of the y-axis. The present graph H] = (V]/, A})
is an infinite strip with width ¢ and the triangle-shaped graph H; = (V;, A;) introduced in
Section 1.1 is a proper subset of H,. For any pair of vertices u,v € V/, we say that there is
a path P from u to v, if we can take a sequence of successive arcs € A} oriented from u to v.

13



(Each path is regarded as a set of these arcs; P = {a1,aq,---,a,} C Aj}.) Let P(u,v) denote
the set of all paths from u to v.

Let n € N and choose a set of n integers r; € Z such that r; < ry < -.- <r,. Then let
u; = (2(4 — 1),0),v:(r;) = (r; + 2(3 — 1),¢) and let P(ry,---,7r,) denote the set of n paths
PM™ = (P,---, P,) with P, € P(us,vi(r:)),1 < i < n. Two paths P and P’ are said to
intersect if they share a common vertex and let Po(ry,- -« ,7) C P(r1,--+,7r,) be a set of all
nonintersecting n paths [27].

The n vicious walkers with fixed starting and ending points on Z are defined as the
interacting random walkers, whose trajectory during time interval [0, ] is given by an element,

of Py(ry,- -+, r,) on the spatio-temporal plane H,. The restriction of nonintersecting on paths
realizes the vicious property of walkers [10, 1, 9].
Let
1 .
uizi(t—n), 1=1,2,---,n (3.1)

which denotes the number of left steps by the i-th walker during time interval [0,¢]. The
bijection between the integer flows and the trajectories of vicious walkers was established by
Arrowsmith et al. [1], which gives the following identity.

Lemma 3.1 (Arrowsmith-Mason-Essam) Assume that {u;}?_; is given by (5.1) and let
n(—t+2k)=Hi:p=t—k}, k=0,1,---,1L (3.2)

Then
Ft(n(_t)v T 7n(t)) - |,PO(7"17 T 7Tn)|'

3.2 Gessel-Viennot Determinant and Elementary Symmetric Poly-

nomials
Let ; € C,i = 1,2,---,¢, and consider a set of polynomials in x7,---,x; with integer
coefficients Ry = Z[[x; : i =1,2,---,t]]. A weight function is a map w : A}, — R, that assigns

values in R, to each arc € Aj. For any path P the weight is defined as w(P) = [[,ep w(a), and
for each P = (Py,---,P,) € Po(r1,---,7a) the weight is given as w(P™) = [T, w(F).

Define
Wu,v) = Y. w(P).
PeP(u,v)

Then the Gessel-Viennot theorem [14] gives the following lemma [27] (see also [4]).

Theorem 3.2 (Gessel-Viennot) Define

W(/)"17...7/’"n;x17...7a:t) — Z w(P(TL))

PO ePy(ry,rn)

Then
W(Tlv SRR AT P 7$t) = det (W(ulv vi))lgi,jgn :

14



Hereafter we specify the weight function as follows. For each s = 1,2,---,¢, the arc a
from a vertex (r,s — 1) € V/ to a vertex (r’,s) € V/ has the weight

(a) — Ts ifr'=r—1
A N

(Remark that we have assumed that there are at most two arcs oriented out of each vertex
in H].) We can see that if 1 = 25 = --- = 2y = 1, then the weight function is a constant 1
and

[Polra, - yra)| = Wire, - rm @, ,$t)|z1:z2:...:m:1 .

Moreover Definition 2.1 and the above choice of weight function imply that Lemma 3.1 can
be generalized as

P"t(/n/(_t)7 e 7n(t);a:17 e 7$t) — Wt(/’nly e 7/’"n;x17 e 7a:t)

by using the same bijection of Arrowsmith et al.

Let eg(xy, - -, x¢) be the sum of all monomials in the form x;, -z, - .. .- x;, for all strictly
increasing sequences 1 < 41 < --- < 4 < {. In other words, e(x1,---,x;)’s are defined as
the coefficients in the expansion

t

1A+ zi2) = Z w1, @) 2R (3.3)

=1

By definition ey (z1, - - -, ;) is a symmetric polynomial in z1, - - -, z; called the k-th elementary
symmetric polynomial [11, 20]. Then it is easy to see that

Wui,v5) = €uypij(@1, -+ @)

Applying the Gessel-Viennot theorem (Theorem 3.2) we have the following determinantal
expression.

Theorem 3.3 Assume (5.1) and (3.2). Then

Fi(n(—t), -, n(t);z1,- -, x) = det (euﬁi_j(xl, e ,xt)>

1<4,5<n

3.3 Conjugate of Young Diagrams

Now we have two distinct determinantal expressions for the generalized flow polynomials; (i)
a ratio of two determinants of ¢ x ¢ matrices (Theorem 2.5) and (ii) a determinant of n x n
matrix (Theorem 3.3). Here we show that this duality of expressions for n walkers in time
period t can be understood well by using the knowledge of Young diagrams for partitions
11, 20].

The flow polynomials are specified by a set of integers {n(—t + 2k)}.=1 which represent
the strengths of sinks. By the transformation (1.6) we have a set of integers {A\;}!_; with
the property A\; > Ay > --- > Ay > 0. Such a sequence of non-negative integers in decreasing
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order A = (A1, -, ) is called a partition and each partition A is represented by a Young
diagram. The conjugate of a partition A is defined as the partition A whose diagram is the
transpose of the diagram of A. The number m;(\) = [{j : A\; = i}| is called the multiplicity
of ¢ in A and the above definition of conjugate gives the relation

>\i - ka(Al)

k>i

For nonintersecting paths (vicious walkers) we assume the inequalities 71 < ry < -+ <1,
and thus g = (p1,- -+, ) given by (3.1) is a partition. The relation (3.2) means n(t — 2k) =
me(p), k= 1,2,---,t. Then we have

t t—1

d_m(p) = Y n(—t + 2k).

k=i k=0

Since (1.6) holds, we can conclude that g = (g1, - -, i) is the conjugate of A = (Ag, -, As).

It is known that the Schur polynomial sy(z1,---,x;) can be expressed as a polynomial
in the elementary symmetry polynomials eg(z1, - -, x;) as [11, 20]
sa(xy, -+, ) = det (e,\;Jri_j(xl, e 7a:t)>1§i,j§n , (3.4)

when A; < n. The expression given by Theorem 3.3 is equivalent with the identity (3.4)
for we have proved p = X. Since we proved the equivalence between the generalized flow
polynomials and the Schur functions (Theorem 2.5), we can say that the identity (3.4) was
derived by applying the Gessel-Viennot theorem to the flow polynomials (i.e. nonintersecting
paths/vicious walkers). Inversely speaking, the identity (3.4) with Theorem 3.3 gives another
proof of Theorem 2.5.

3.4 Essam-Guttmann’s Conjugate Expression

If we set 1 = 2o = - -+ = x; = ¢ in (3.3), we have
t t
(1+xz2) =) <k>a:kzk =Y en(z, -, 3)2"
k=0 k=0
Therefore

t
W(ui,vj)|m:z2:...:zt:1 = (X~ . ]>

J
and Theorem 3.3 gives

Fi(n(=1),---,n(t)) = det ((X +t’i—j>> i<n

Essam and Guttmann [9] proved that this binomial determinant can be reduced to the
following product formula (see also [13, 18]).
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Theorem 3.4 (Essam-Guttmann) Letn € N and assume (1.6) with 3t n(—t + 2k) =
n. And let N = (N},---, L) be the conjugate partition of X. Then

n (t+mn—1q)
Fi(n(=t),---,n(t)) = H Mo+ n—i)l(t— N+ i —1)!

%

II N=X+7i—-9. (35)

1<i<j<n

This expression may be regarded as the conjugate expression of (1.7) (i.e. the identities
given in Corollary 2.8). As remarked after Corollary 2.8, Essam and Guttmann derived the

exact formula (1.4) for the number of watermelon configurations as a special case of Theorem
3.4.

4 Summation of Flow Polynomials and Macdonald For-
mula

In the previous section we studied the generalized flow polynomials with a fixed set of
strengths of sinks {n(—t+2k)}._,. There are many possible choices of the set {n(—t+2k)} _,
which are compatible to a given strength of the source at O = (0,0). In other words, all
flow polynomials, which satisfy the condition 3t _,n(—t + 2k) = n have the same strength
n of the source. Here we consider the summation of all such flow polynomials with a fixed
n defined as follows.

Definition 4.1 Fort € N andn € Z™, define

Zin(T1,- -, ) = Z Z 1 (Zn(—t+2k) —n) Fin(—=t), -, n(t);x1,- -, x¢).

n(—¢)>0 n(t)>0 k=0

The corresponding function for the g-flow polynomials is defined by

Zin(q) = Zenld g ).

The Macdonald formula (Formula 1.3) is stated as the following theorem.
Theorem 4.2 (Macdonald)

-1 n+2t—j
det(z]" — x; )1<ij<t

det(z? ™! — 27 )1<ij<e
det(ﬂ_l — a7n+2t_j)1<i,j<t
— — i i EUVRS . (4.1)

[T =) TT [ — ;) (@a; — 1))

i=1 1<i<j<t

Zen(T1,- - me) =

Remark that the second equality is obtained by employing a case of the Weyl denominator
formulae, whose simple inductive proof can be found in [5]. Since Z;,(z1,- - -, 2;) is defined
as a finite summation of polynomials in x;,---,x;, the numerator should be divisible by
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the denominator. This fact is easily confirmed, since we can see that the determinant in
numerator vanishes if x; =1 (1 <i<t)orw; =x; (1 <i<j<t)orzux;=1(1<i<j<

).

In the present section we show the following identities are derived from Theorem 4.2.

Corollary 4.3

1 — gntiti=1

(@) Zin(@) = I

1<i<y<t
H ntitj—1

1<i<j<t tty-1

1— giti-1 -
(i) lim Zyn(q) =

g—1 7
By Corollaries 2.7 and 2.8, these identities gives the Bender-Knuth formula (Formula 1.2)

and the Arrowsmith-Mason-Essam formula (Formula 1.1), respectively.
First we prove the following lemma.

Lemma 4.4 Fort € N,n € Z" and q € C, define a t X t matrix

M(t,n;q) = (q(t—iﬂ)(j—l) _ q(t—i+1)(n+2t—j))

1<e,5<8
1— qt(n+2t—1) qt o qt(n+2t—2) . qt(t—l) o qt(n+t)
1— q(t—l)(n+2t—1) qt—l _ q(t—l)(n+2t—2) . q(t—l)(t—l) _ q(t—l)(n+t)
1— q2(n+2t—1) q2 o q2(n+2t—2) q2(t—1) o q2(n+t)
1 _ qn+2t—1 q— qn+2t—2 . qt—l _ qn+t

and let D(t,n;q) = det M(t,n;q). Then

t
Dtmig) = T[0 =g ) [ [ =g (g e )

i=1 1<i<y<t
= II @—-¢) II a—-g¢rt . (4.2)
1<i<j<t 1<e<s<t

Proof. (i) For a fixed k (1 < k < t), assume that ¢"t(¢=Ft) — 1. Then M(t,n;q);; =
gt~V (=D k=3=1) Therefore M (t,n; )iy — 1—¢HER=2 — M (t. 15 )i t1h1
for 1 < Vi <t. Then D(t,n;q) = 0, since the first column is equal to (—1) x (¢ + k — 1)-
th column, and thus D(t,n;q) should have the factors [T_,(1 — ¢" =%y (i) Fix a
pair (k,£) (1 < k < £ < t) and assume that ¢"~**! — ¢=¢*1 — 0. Then M(t,n;q)r; =
GURFDGD)  lmkt Dt 2] — (—0)G=1) _ gl @2-0) — A (s ), for 1 < V) < L.
That is, the k-th row is equal to the ¢-th row and thus D(¢,n : ¢) = 0. Therefore D(t,n;q)
should have the factors [1;<ger<i (¢ — ¢"~¢™). (iii) By the similar argument we can show
that D(t,n; q) should have the factors [T ;e (¢"HEFDFEED 1),
Let D(t,n; q) be the RHS of the first equality of (4.2). Then we can conclude that

D(t,n;q) = c(t,n; ¢)D(t,n; )
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with a polynomial ¢(¢,m;q) of g. We can see that the degree of D(t,n;q) in q is

Zt:[n+(t—z'+1)]+zt: Zt: (t—z‘+1)+zt: Zt: (n+2t+2—i—7)=t(t+1)(5t+3n—2)/6,
i=1 i=1 j=i+1 i=1 j=i+1

and by definition of D(t,n;q) the degree of D(t,n;q) in ¢ is evaluated as

Zt:(t—H L)(n+2t —i)=t(t+1)(5t+ 3n —2)/6.

=1

Furthermore we can see that both of the coefficients of these largest powers of ¢ in D(t,n; q)
and D(t,n;q) are given by (—1)!. Then we can conclude that c(¢,m;q) = 1 and the first

equality of (4.2) is proved. Let ¢ =t —i+1 and j'=1¢t—j+ 1. Then

D(t,nyq) = [l0—a"") I (& =)@ —1)

4 1<y’ </ <t
t
= [[a-¢"*" 1] (¢ -¢)a—g""").
i=1 1<i<i<t

Here we can see that []j<icjci(1 — @) = Theicjce (1 — ¢ 71/ TI1 (1 — g™ 1), then
the second equality of (4.2) is proved. 1

Proof of Corollary 4.3. With definitions of 7 ,(q) and D(t,n; q) Theorem 4.2 gives

D(t,n;q)

7o) =D, 0r)

The equality (i) is obtained by applying the second equality of (4.2) in Lemma 4.4 to this
expression. The equality (ii) is immediately obtained from (i). 1

In the context of vicious walkers lim,_,; Z; ,,(q) gives the total number of star configura-
tions of n vicious walkers and the different expressions from (ii) of Corollary 4.3, which are,
however, equivalent to it, were conjectured by direct evaluations;

I ntiti—1 DR 20 1)y g

1<6<<t itj—1 a i=1 (% - 1)2t—4i+3

(4):

The second expression was given by Arrowsmith, Mason and Essam [1] as mentioned in
Section 1. The third expression is found in Essam and Guttmann [9].

: (),
nt 7
2 [[1 :
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5 Recurrence Equation and Macdonald Formula as its
Solution

In this section we review an “elementary proof” of the Macdonald formula (Formula 1.3 or
Theorem 4.2) given by Bressoud [5]. He proved the formula by induction on ¢. Here we
claim that this proof essentially bases on the fact that Z; ,(z1,- - -, x:) satisfies a recurrence
equation, which was not explicitly mentioned in [5].

Lemma 5.1 Fort=2,3,---,

n t t x; .
Zt,n(£17"'7$t) — Z($1$t)mz H ._ Zt—l,n—m(a:lv'"7xk7"'7$t)7 (51)
m=0 ¢ ¢

where &y, means omitting xy n Ty, - -, Ty.

Proof. By Definition 4.1, Theorem 2.5 and (2.5),

1 t—1
Ty, 20) — DS 1<Zn(—t+2k)§n>
H ($i_$j)n(—t)20 n(t—2)>0  \k=0
1<i<j<t

« det <a: Z{)n(—t+2k)+t—j>

1<i,3<t

Expand the determinant along the ¢-th column, we have

det <$ Z{)n(_t+2k)+t_j>

(= 1)+ n(—t) det< I n(—t20) +t— J)

I
Mw

1<i<tyitk,1<j<t—1

i

1

(—1)”'“90’2(_” ﬁ LD g <$t Zin(—t+2ﬁ)+t—j—1)
i=1itk

I
]~

1<i<t ik, 1<j<t—1

i
I

Remark that

oo > 1<0<Z t+2k) <n>( )

n(—t)>0 n(t—2)>0

Z oo 1<0<Z —t +2k) <n—n(— t))(--)

n(—t)=0 n(—t+2)>0 n(t—2)>0
and that

I (@i—-=)= T]] )x [ (@i — ) (—1)".

1<i<j<t 1§i<j§t;j7£k i=15ik
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t
—)+1
I«
=152

X T oo 1<0<Z —t+2k) <n—n(- t))

(i — ;) n(—t+2)>2  n(t—2)>0
1<i<i<t;i,j#k

xdet< Z in( t+20)+t—35— 1)
1<i<t;itk,1<j<t—1

Let m = n(—t) and (s — 1) = n(s),s = —t +2,---,t — 2. Then

(t—1)—1
% oo > (0< Z —(t—1) +2k;)<n—m)
H (@ — x;) A(—(t=1)>0  #((t—=1)—2)>0
1<i<j<t;i,j£k

x det (a; &0 A(— (= 1)+ 20+ (1) J)
1<i<tsitk,1<j<t—1

n

t t .
— Z($1$t)mz H - Zt—l,n—m(xlv'"7£k7"'7xt)-

m=0 k—1i—12k Yi — Tk
]
Fort =1 "
” n(— 1— a7
Dinla)= Y af V= (5.2)

n(—1)=0

Then the Macdonald formula is equivalent with the following statement, which was proved
in [5].

Proposition 5.2 (Bressoud) Consider (5.1) as a recurrence equation on t = 1,2,3,---
Set the initial condition as (5.2). Then the unique solution of (5.1) is given by (4.1).

6 Okada’s Pfatfian and Macdonald Formula
Forte€ N,neZt and z; € C,1 <i <, define a t x (n+t) matrix X as

nth
X = det(x; )1<z<t1<]<n+t

Dbyl g >
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R I SR |

| wr o m
pptt=l o ogntt=2 o 1
Let {ky, -, k} C{1,2,---,n+t} and write a t X ¢ submatrix of X as
. 7’L+t—k2
D OOES det(z; )1§i,z§t
t—k t—k -
a:711+ 1 $711+ 2L x711+t kt
t—k t—k -
- a:721+ 1 $721+ 2L x721+t kt
t—k t—k t—k
$?+ 1 x?Jr 2 L. x?Jr t

Then Definition 4.1, Theorem 2.5 and (2.5) give the following lemma.

Lemma 6.1

1
Zin(X1,- -, 2) = Z det( Xk, k,)-
H ($Z - x]) 1<k <ko< - <kt<n+t
1<i<j<t
That is, Zyn(x1,- -+, @) s given as a summation of minors of X.

Hereafter we assume that ¢ is even positive integer in this section for simplicity of the
description.

6.1 Okada’s minor-summation formula

First we give the definition of Pfaffian of anti-symmetric matrix.

Definition 6.2 Let 2m be an even integer and define a subset Fo,,, of the symmetric group
S2m by

Fomn={0€8S:0(l)<oB)<---<a@m—1), a(2i —1) < o(2i) (1 <Vi<m)}.
Then the Pfaffian of a 2m x 2m anti-symmetric matric A = (aij)1<ij<om 1S defined as

Pf(A) - Z (_I)I(U)aa(l)tf@) Ag(3)o(4) ** * Ao (2m—1)o(2m)

oC€Fom

where Z(o) is the number of inversions in o.

The following properties of Pfaffian will be used in this section.

Lemma 6.3 Let m € N and A = (ai;)1<i j<om be a 2m X 2m anti-symmetric matri.

(1) Pf((—ay)icij<om) = (=1)"Pf((aij)1<ii<2m)-

(1) Pl((wszjai)1<ij<om) = [ @i X PE((aij)1<i,j<0m)-
=1

Xy — &5 Ty — Ty
(11i) Pf <71 J ) - 11 : i
— Tilj ) <4 j<om 1<i<j<om L — Lilj
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The property (i) is immediately found by the definition of Pfaffian. Other two properties

are proved in Proposition 2.3 of Stembridge [27].

Assume that n; and ng are integers with 1 < n; < ng and n; is even. Consider an arbi-
trary ny X ng rectangular matrix M = (mi;)1<i<n; 1<j<n, and its nq1 X n7 square submatrices

Miy kg ook, = (Tite; )1<i 5 <1 5

where {k1, ko, -, kn, } C {1,2,---,n2}. Okada proved the following general identity which

is called the minor-summation formula (Theorem 3 in [23]).

Theorem 6.4 (Okada) Let

Mik, Mk,
Mk Mk

Yij — Z

1Sk1 <kn <ng

or 1 <1< j<mnq. Define an n1 X ny anti-symmetric matrix
J Y

0 Y12 Y13 o Ying
—2 0 Yo3 o Yoy
Y =1 —yis  —yo3 0 o Y,
—Yiny —Y2ny —Y3n, 0
Then
> det(Miy oy o, ) = PE(Y).

1<k <k2<~"<kn1 <ngy

6.2 From Pfaffian to Determinant

Define T

T T
ntit—kq n+it—ko
j Ly

(@i, z5) = Z

1<k <ko<n+t

for 1 <17 < j <t. Then we have

(21.3,) (@ — 2){1 — (way)" '} — (1 — mymy) (a7t — 27
ylx;,x;) = :
! (1 —2)(1 = z;)(1 — wiw;)
Combining Lemma 6.1 and Theorem 6.4 gives the following identity.
Proposition 6.5 Define at x t anti-symmetric matric
0 y(z1,22)  yl(o1,23) y(1, 2t)
—y(®1,22) 0 y(@2,s) y(@2, xt)
Yz, - 2) = | —ylz1,23)  —y(w2,23) 0 y(xs, xt)
—y($1,$t) —y($2,$t) —y($3,$t) 0
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where y(z;,x;) is defined by (6.1). Then

Zt,n(a:b e 7$t) —

1<e<g<t

Okada showed that the Macdonald formula (Theorem 4.2) is obtained from Proposition
6.5 by using the following Pfaffian identities.

Lemma 6.6 Let Y(xq, -, x;) be the t X t anti-symmetric matriz defined by (6.2). Then

-1 n4-2t—j
det(z]" — z; )1<i i<t
. .

H(l — $1) H ($i$j — 1)

PE(Y(xy, -, 2)) =

i—1 1<i<j<t
Proof. By (i) and (ii) of Lemma 6.3
("
PY (21,5 20)) = P (21, -, 21)),
i—1

where Y (z1,- -+, ;) is obtained from (6.2) by replacing y(zi, z;) by
Y(@s, @) = —(1 = z)(1 — @)y (@i, 7).
Okada proved the identity (Corollary 4.6 in [24])

=1 n4-2t—j
det(z] — )i<ij<t

PE(Y (21, -, m¢)) = 1 (1- @)

1<i<g<t

Since [ (1—wz;) = (—1)%'5('5_1) I[[ (ziw;—1)and t(t—1)/2 = ¢/2 mod 2 for even ¢,
1<i<g<t I<i<yst
the proof is completed. 1

6.3 n — oo Limit

For the usage of the later sections, here we consider the n — oo limit. Assume that 0 <
x; < 1,1 <4 < ¢, in this subsection. Then (6.1) defines

Ty — Xy
(1 —2i)(1 = z)(1 — wizy)
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Define Y (x1,---,2z:) be the ¢ X ¢ anti-symmetric matrix obtained from the matrix (6.2)
by replacing y(x;,z;) by the above y(x;, ;). Then Okada’s minor-summation formula
(Theorem 6.4) gives

1
lim Z; (21, -, 2) = Plf(Yeo(x1, -5 24))-

nee I (@i—ay)

1<i<j<t

Here we can use (ii) and (ii) of Lemma 6.3 to calculate the Pfaffian of Y, as

H T; — a:j
pf ( @iy ) s
Pf(YOO ($17 e 7xt)) — (1_Iizj>1gi<jgt e 1Si<j§t1 $za:] .

t t

H(l — ;) H(l—a:i)

=1 =1

On the other hand, since the independence of Fiy(n(—t), -, n(t);z1,---,x;) on n(t) claimed
in Theorem 2.5 implies that

Zt,n($17“‘7$t) = Z Z E(n(_t)7...7n(t);x17...7xt)

n(—¢)>0 n(t—2)>0

X > 1<Zt:n —t + 2k) —n)

n(t)>0 k

= Y > 1(277, —t+ 2k) < )Ft(n(—t),---,n(t);xl,---,a:t),

n(—¢)>0 n(t—2)>0

H.

and then

lim Z; (21, -, @) = Z Z Fin(—t),---,nt);x1,- -, x¢).

e n(—0)>0  n(i—2)>0
The following identities are then concluded.

Lemma 6.7 Assume that 0 < z; < 1,1 =1,2,---,t. Then

t

Yo >0 Fn(—t), o yn(t); @, x) = [JA—=)T ] Q= @)™ (6.3)

n(=)>0  n(t—2)>0 i=1 1<i<j<t

In particular, if 0 < a,q < 1,

S S B(=t), (0w 3) |y = (1= @)1= o) 7H, (6.4)

n(—t)>0 n(t—2)>0

and
t
Z Z Fi(n(=t),---,n(t);q) = H(l o qt—i+1)—1 H (1— q2t—i—j+2)—1
n(—)>0  n(t—2)>0 i=1 1<i<j<t
= JI a-gthH (6.5)
1<i<j<t
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It should be noted that, when 0 < z; < 1 for 1 <i<tand 0 < q <1, (6.3) and (6.5)
are obtained directly from Theorem 4.2 (Macdonald formula) and (i) of Corollary 4.3 (the
Bender-Knuth formula) by taking the limit n — oo, respectively

7 Determinantal Expressions with Orthogonal Polyno-
mials

7.1 Gaussian Ensembles of Random Matrices and Hermite Poly-
nomials

Consider the Gaussian orthogonal ensemble of N x N random matrices (3 = 1 case). The
distribution function of eigenvalues {y;}¥, is described by

1 N
Pai(yr, - yn) = cie 2 2% T |y =y, (7.1)
1<i<j<N
where ¢; is a normalized constant to be determined so that [ dy; - - - [7o, dyn Pnv1(y1,- -, yn) =

1.

A standard way in the random matrix theory found in Chapter 5 of [21] or Chapter 5
of 8] is started by giving a determinantal expression to the distribution function, whose
matrix elements are given by orthogonal polynomials. The argument is the following. By
the Vandermonde determinant (2.5),

N-1

NS L
- - 1
I wi-w = | 7
1<i<j<N
’ yn - oyn o e 1
1 1 1
_ (_1)%N(N—1) 1 yz YN ‘ (7.2)
oyt yn "

Let H;(y) be the Hermite polynomial of order ¢ defined by

. aN .[i/2] (2 i—2k
Hi(y) =¢* (‘@) e :Z!kz::o(_l) %

In the last expression of (7.2) multiply the i-th row of the matrix by 2¢=! for 1 < ¢ < ¢ and
then add to each row an appropriate linear combination of the other rows with lower power
of y’s, so that we have

[T (vi—ys) = const. x det(H;_1(y;))1<ij<n-

1 <i<j<N
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We further multiply the i-th row of the matrix by a factor (2°-1(i — 1)1/7)~1/2, 1 <4 < ¢,
and the j-th column by e_z?m, 1 < j <t, and we obtain

N
e 2 ¥ [ (g — ;) = const. x det(pi1(y;))1<ijen

1<i<ji<N
where 12
i - — 1.2
pily) = (2 ’”ﬁ) e 2" Hi(y).
The polynomials p;(y),7 = 0,1,2,- -, are orthogonal over (—oo, 00) as

/oo Spl(y)spj(y)dy - 6i,j for Z?] — 07 17 27 T

where 0, ; is the Kronecker delta. Then we have the following determinantal expression using
the orthogonal polynomials for (7.1),

Pni(yr, -+ yn) = cadet(pi1(y3))1<i,<n,
under the condition that —oo < y1 < gyo < -+ < yny < 00,

where ¢y is a constant to be determined so that

CzN!/_ dyr - - /_ dyn1(y1 <y < - <yw)det(pimi1(y;))icijcny = 1.

7.2 Anisotropic-Flow Polynomials and Meixner Polynomials

Let 0 < o < 1 and define the polynomials of « for each given set {n(—t + 2k)}:_,.
Definition 7.1

Fr(n(=t),n(—t+2),---,n(t)) = Fy(n(—t),n(—t +2), - ,n(t); z1,- -, x¢)|

T1==Tp=0 "

By the definition of Fy(n(—t),---,n(t);x1, -, x¢), it is easy to see that the power of
a of each term represents the number of arcs {a} C A;, which are oriented up-left-wards
and support a strictly positive flow, ¢(a) > 0. Then the variable o measures the left-right
anisotropy of flow and we call the polynomial F* the anisotropic-flow polynomials here See
[15] and [2] for anisotropic vicious walker models.

Put z; = ay;, 1 <14 <, in (2.6). Then we set y; = ¢"~**! and take the ¢ — 1 limit to
have

Z%: (As+t—1) A — s .
o v Lsi=1 i +] )
P;f (n(_t)v T 7n(t)) - Li(t—1) .] ; .
Q2 1<i<i<t J—1
Define
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and by using the Vandermonde determinant (2.5) we rewrite the equality as

0423:1’%
Frn(=t), - n(t)) = ———=—x [I (hi—hy)

t—1
1 o
Ozﬁt(t_l) | | il 1<i<g<t
=1

o oh? b
_ O EDEY et b |
a%t“‘”ﬁﬂ Mlab hah B
Now we define the polynomials M;(h; «),i = 0,1,2,---, by
Millie) = P (771 = ), (75)

where F (“;**|z) is the hypergeometric series defined by

P = 3 BT

They are the special case of the Meixner polynomials M,(x;5,¢) [19, 17|; M;(h;a) =
M;(h; 1,a?). We found that M;(h; a) has the generating function

z L e ;
<1 = ¥> (1 —z)~h1 :Z;Mi(h;oz)z
and satisfy the orthogonality over the discrete variable h = 0,1,2,---,

1
5o

S a Mi(h;a)Mj(h;a):m )

h=0

The normalized discrete orthogonal polynomials {m;(h; «)} are then defined as
mi(h; o) = V1 —a? of M;(h)a”, (7.6)

such that

V1—a2(a—2)"1—az)™1 = imi(h; )zt

and -
Z mz(h’7 oz)m](h, Oé) - 6i,j for Zv] — 07 17 27 T

h=0

First few polynomials are given as follows,

mo(h;a) = V1—a2a",
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mi(h;a) = Toz {(e® = )h +a?},
1— 2
ma(hya) = 7V220‘o/1{(a2 C12R2 4 (0 — 1)(3a2 + 1A+ 2at),
8%
1— 2
ma(h;a) = 7\/6043040/1{(042 13K 4 3(a? — 1)2(20% + DR

+(a? = 1)(11a* + 50 +2)h + 6a°},- - -.
By definition (7.5) we find that
mi(h; o) = A;()™{h* + O(h1)} for 1=1,2,---

with

(—1)'(1 — a?)i*3
il of '

Al(Oé) =

Then in the matrix in (7.4) we multiply the i-th row by a factor A;_;(«a) for 1 <7 < ¢ and
after that we add to each row an appropriate linear combination of the other rows with lower
power of h, so that

(—1)3tt=D) . det(miy (hy; ) )icijse

t t—1
oz%t(t_l)H ! [T A4i(e)
i1 i1

EE(n(=t),---,n(l) =

It is easy to see

t—1 (_1)%t(t—1)(1 _ az)%ﬁ
H Ai(ar) = -1 :
=1 oz%t(t_l)H il

i=1

Then we have the following equality.

Lemma 7.2 Let m;(h; «) be the discrete orthogonal polynomials defined by (7.6) using the
special case of the Meizner polynomials (7.5). Then

Fe(n(—t), -, n(t) = (1 — a®) 2 det(mi_(hy; @) 1<i <t

where hy = YL n(—t + 2k) +t —d, i = 1,2, -, L.

Combining this relation with (6.4) in Lemma 6.7 gives the following summation formula of
determinants.

Proposition 7.3 Fort e N0 <a <1

1+a>%
1—a/

3 det(mi—1(hs; o) hi<ij<t = <

0<hy<hg_1<-+<hy
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7.3 ¢-Flow Polynomials and Little ¢g-Jacobi Polynomials

By using the Vandermonde determinant (2.5) the formula given by Corollary 2.7 is rewritten
as

qzzzl Ai A : A j
E(n(_t)v T ,’I’I,(t), Q) - -t —J H (q B 1 j+t_]>
I (@ =d7) 1cis«
1<i<5<t
h1 qh2 th
1 2h1 2h2 “ .. 2ht
- . |9 q T
q (- 1)t(t+1)H )i g gthr .. gt

where h;’s are defined as (7.3).
We consider a special case of the little g-Jacobi polynomials [19], which can be regarded
as a g-analogue of the Jacobi polynomials,

i) =6 (" lgsam) (7.8)

where ( o ) i
a1,a9 a1, q)k\@2;q)r =

q; %) =

¢ %5 2) go ;e (G Dk

is the g-hypergeometric series with the g-analogue of the Pochhammer-symbol (a; ¢)x; (a;¢)o =
land (a;¢9)r = (1—a)(1—aq)(1—ag?) - - (1—ag*1),k = 1,2,3,- - -. The first few polynomials
are given as

p0($) = 1,
1—¢°
pi(x) = 1— 1_761231:,
14 . Q(l—q4)(1—q5)x2
) = It e
=0 - ) (1-¢°)(1—¢° 2
(s R | ey
(1= -¢)0 - )a:
PFl—-—)(1 -1 —gY)" 7
The orthogonality is
i q2hpi(qh)pj(qh) = (1 —q) 9;; for ¢,7=0,1,2,---.

(1 — g%t2)(1 — git1)?
We define the normalized polynomials as
1—¢¥2(1— g h
¢(1—q)
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Pi(h; q) =




so that -
Z ¢1(h’7 Q)¢J(hﬂ Q) — 6i,j for Z?] — 07 17 27 co
h=0

Let

VI— @21 - ¢) y (7% @)i(g" )i
q‘(1 - q) (q2' Q)~(q, )i

j=1 q] 1 - q])

Bi(q)

Then by definition
¢(h’Q) (Q) hL1<|>(/)( )7 i:071727"'7

as a power series of z = ¢". The same argument on the matrix in (7.7) as in the previous
subsections and the equality

1/2
1+gqg L
t(t 1) 1 — i+7—1
t—1 H ( g ) 19‘1;[]'95( q )
i= Lo iNE—1
1 q6(t 1)t(t+1)H(1 —gq )t
=1

lead to the following identity.

Lemma 7.4 Let 1;(h; q) be the discrete q-orthogonal polynomials defined by (7.9) using the
special case of the little g-Jacobi polynomials (7.8). Then

1
1— i1\ —
Fitn=t),nlts) = COHO T (L) TT -7 xdentiins (s
T <kigia
where hy = Y4 n(—t +2k) +t —d, i =1,2,-- -, L.
This identity and (6.5) in Lemma 6.7 give the summation formula.

Proposition 7.5 Fort e N,0<g <1

1+
det (i1 (hy; 9))1<sjar = (—1)3H0D H ( : )

0<h<hy_1<-<hy 1 - q

8 Determinantal Probability Measures for Flow Poly-
nomials

Here we fix ¢, that is, fix the directed graph H; = (V;, A;). For each set of strengths of
sinks, {n(—t + 2k)}!_,, flow polynomials F(n(—t),---,n(t)) and Fy(n(—t),---,n(t);q) are
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uniquely determined as polynomials of a and ¢, respectively. Now we consider ensembles
of these polynomials by allowing n(—t + 2k)’s to take arbitrary nonnegative integers and
introduce the following probability measures.

Definition 8.1 Fort € N andn € Z" consider the state space Xy = (Z1)!. For0 < a,q <1
the probability measures on X, are defined as

a F2(na, -+ neqa)
M mn g 7/n/ — =
e Z(ut)
and o |
I .. _ Ln, - ey15 9
vi(ny, -, mne) 7200
with 1
Z(M?) = Z Fta(nlv e 7nt) - (1 — a)_t(l — 042)_§t(t_1)
(n1,m)EXy
and with N
Z(l/g) = E(n17”'7nt;q) — H (l_qur]—l)—l‘
(n1,-m)EXe 1<i< <t

We can also define the following determinantal probability measures for strictly decreasing
finite series of nonnegative integers.

Definition 8.2 Fort € N consider the state space X; = {(hy, ho,--+,ht) € (Z1)' : hy >
he > -+ > h}. For 0 < a,q <1 the probability measures on X; are defined as

(s hy) — det(mi—1(hy; o) 1<ii<e

Z(fig)
e det($i1(hs3 )
Sah _ GeW W1\ ) )1<i <t
v (h’lv 7h’t) Z(,}E])
with .
o I+ a\?
Z(jig) = > det(mi-1(hj; a))i<ij<t = <1 — a)
0<hy<hy_1<<hy
and with

Z(0) = 2 det (41 (hy; )1<ijer = (—1)50D 11 (1 - ql) 2 ,

o~
0<ht<hy_1<--<hi 3\l —q

where m;(h; ) and ¥;(h;q) are the discrete orthogonal polynomials defined by (7.6) and
(7.9), respectively.
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The expectations and probabilities are defined as usual on the probability measures as

EM() - Z MM(mb"',mt)(‘)a

(ml’...’mt)ey
Pu() = Em(1(-))
for each probability measure M on Y. Lemmas 7.2 and 7.4 state that, if h; = Z;jf“l n;+t—1
with ¢ =1,2,---,¢, then
pg (s - ome) = g (hay oo )
and

Vg(nlv'”7nt) — Ag(h17"'7ht)‘

As corollaries of the Macdonald formula (Theorem 4.2), the following probability laws on
the measures are concluded.

Corollary 8.3 Fizt € N and assume 0 < a,q < 1. Forn € Z"

t
P (an§n> = Pp(h1 <t+n-1)
i1

-1 n2t—j
_ (1 . Oz)t(l . a2)%t(t—1) x det($i — T )1Si,jSt

-1 20—
det(zi™ — 27 7 i<ij<t loyocprea

(2

and t
ny (an§n> :Pf/g(hfl §t+n_1): H (l_q”JriJrj—l)‘
=1

9 Concluding Remarks

9.1 Stembridge’s Pfaffian and Macdonald’s Formula

The Macdonald formula is the summation formula of the Schur functions. In Section 6 we
reviewed Okada’s proof in which each Schur function is represented by the ratio of two £ x ¢
determinant (Jacobi-Trudi formula) and the summation is performed as a minor-summation
of t X (n+ t) matrix. The result is given by a ¢t x ¢ Pfaffian with a prefactor.

As shown in Section 3, the Gessel-Viennot theorem gives the n x n determinantal ex-
pression for the Schur functions. Stembridge gave a combinatorial proof of the fact that
the summation of such n x n determinants is expressed by an n x n Pfaffian [27]. In [27]
Stembridge also gave another proof of the Macdonald formula (Formula 1.3) by showing the
equivalence between his Pfaffian and RHS of Formula 1.3.
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9.2 Nagao-Forrester’s Quaternion Determinant and Conjugate of
Arrowsmith-Mason-Essam’s Formula

Corollaries 2.7 and 2.8 give the product formulae to the flow polynomials in the form
[li<i<j<t Ji;. In Section 7 following the standard argument of the random matrix theory
we rewrote these product formulae by using the ¢ x ¢ determinants with the elements de-
scribed by discrete orthogonal polynomials. We then defined probability measures, which
can be regarded as the discrete analogues of the Gaussian orthogonal ensemble of random
matrices. We showed in Section 8 that the Macdonald formula proves the probability laws
on these measures.

There will be two problems concerning the results. The first one is whether we can
derive these probability laws (Corollary 8.3) by using the technique of the random matrix
theory [21, 8]. This question is asking the possibility of constructing new proofs of the
Arrowsmith-Essam-Mason, the Bender-Knuth, and the Macdonald formulae.

The second problem is about the conjugate expressions. In Section 3 we have shown
that the Gessel-Viennot theorem gives the n x n determinantal expressions and then FEssam-
Guttmann’s expression for the flow polynomial is the product form of [];<;<;<, gi;. This
conjugate expression implies the following formula

<A, <A <N <t i A+ n =9It = A +i—1)! 1<i<j<n ’

1<i<j<t ittj—1

bl (9.1)

which we can call the conjugate Arrowsmith-Essam-Mason formula. The question is whether
we can prove (9.1) independently of the proof of the original Arrowsmith-Mason-Essam
formula (Formula 1.1).

We find in a quite recent paper by Nagao and Forrester [22] that the second problem was
solved by using the technique of random matrix theory. That means, they also gave a partial
answer to our first problem mentioned above. Nagao and Forrester gave such a quaternion
determinantal expression to the Essam-Guttmann formula (3.5) that the summation of LHS
of (9.1) can be performed explicitly. It should be noted that as mentioned on page 127 of
[21] their quaternion determinant should be equal to some n x n Pfaffian. To clarify the
relationship among Okada’s Pfaffian, Stembridge’s Pfaffian and Nagao-Forrester’s quaternion
determinant will be an interesting future problem.
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