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Figure 1 (a)—(e). Pictorial "proof" of self-similarity:
Ethernet traffic (packets per time unit for the August
'89 trace) on 5 different time scales. (Different gray
levels are used to identify the same segments of traffic
on the different time scales.)

Ethernet
packet rates
on different
time scales
Leland et al
1995
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COMMUNICATIONS - PACKET TRAFFIC
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1994 - "On the self-similar nature of Ethernet traffic", Leland et al, Comp Comm Rev
® "pursty activity" of packet rates over many time-scales
® conventional "Poisson” models for over optimistic on queue performance

® "Poisson-like" view of aggregated sources suggests smoother traffic




AUTOCORRELATION - nature of traffic streams

AUTO-CORRELATION FOR LRD TRAFFIC:

STATIONARY BINARY TIME SERIES:

X, €{0,1}, t=1,2,3,...

BATCHED TIME SERIES- size N:

| GOV
XM = N O, X
j=tN+1

AUTO-CORRELATION FORMULA for X :

E(XtXi+k) — E(X:) E(Xe4k)

k) = v (Var(X;)Var(Xs4))

POWER
LAW DECAY

c(k)~k~P, Be(0,1)

AUTO-CORRELATION FOR SRD TRAFFIC:

EXP
DECAY

c(k) ~ oc'k, o>1

SELF-SIMILARITY FOR LRD TRAFFIC :

are the same

H=1-p/2

2nd ORDER statistics of X; and Xt(N)

SELF-SIMILARITY HURST PARAMETER H :




SRD and LRD OUTPUT

] N=BATCH SIZE of AVERAGED DATA
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CHAOTIC MAPS DIGITAL OUTPUT and CODING
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INTERMITTENCY and LINEAR MAPS

d -

intermittency map  f'(x) = x+ax"

tangency with y=x at x=0

implies intermittency at x=0

and small iterative changes
in the values of x

PROBABILITY of ESCAPE

to the region x > d in more than n
iterations of the map f

Is given by

INTERMITTENCY (POWER LAW DECAY)
Prob (1) ~ n *™/m-1)
LINEAR(EXPONENTIAL DECAY)

Prob (n) ~ 2™




OUTPUT COMPARISON OF MAPS
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DYNAMICS - STATISTICS INTERFACE

1 INTERMITTENCY IN DYNAMICS
[0 - CORRELATION IN STATISTICS
0 [ -LONG RANGE DEPENDENCE IN APPLICATIONS

CONJECTURES ON AUTO-CORRELATION (Erramilli et al ('95), Giovanardi et al ('98,'00))
0

0 SINGLE INTERMITTENCY MAPS (WANG, SCHUSTER) |

[] |

| ERRAMILLI MAPS

N DOUBLE INTERMITTENCY MAPS (BARENCO and A.) |

f.()_{ac—kaxml, O<zr<d |
i = r-bl-2x)" d<ax<l

auto-correlation/intermittency property :

ey~ kT y=(@2-m)/(m=1), m=Max{m,}




RECTANGULAR GRID NETWORK MODEL

hosts B can source,
transfer and receive
packets

random host destination

routers e can transfer
packets

every node has a buffer
for queueing packets

packets at head of
gqueue move one step
closer to destination for
each time step




SRD — LRD SRD — LRD queue lengths

via intermittency

—+— LRD Traffic Source
—©— Poisson-Like Traffic Source
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NETWORK MODELS

different types of graph:
REGULAR:
(a) triangular

(b) hexagonal,

and

(c) SMALL-WORLD

random connections added
to increase connectivity

(d) SCALE-FREE
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Prob(vertex valency =n) = n
with exponent Y € [2,3].

(c) (d)



Manhattan network queues as load increases : Poisson vs. LRD

Poisson Sources
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Comparing Queue Lengths for a Manhattan Network with Poisson and LRD sources



100 Node Scale-Free |G Network (Zhou, Mondragon: ITC, Berlin 2003)




T'CP window dynamics

average lifetime

average lifetime

Open-Loop Traffic Sources in a Manhattan Network

average lifetime

Open-Loop Traffic Sources in an IG Model SF Network

average lifetime

10

—— LRD sources

—©— Poisson sources m 1=m2=1 .95

Slow-Start TCP in a Manhattan Network

1
Density of hosts P =0.16

Slow-Start TCP in an IG Model SF Network

5

p =0.8
Density of hosts



ONGOING WORK

e Erratic onset of congestion is a robust feature of
LRD modelling in various networks

e LRD can arise from various sources -
data streams, network structures, aggregation, TCP

e comparative and hierarchical modelling to study
relative LRD strengths for each of these features




